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Information-predicting systems for the design of new materials 
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Abstract 

In this paper we discuss the main principles for the cybernetic prediction of inorganic substances which would 
have predefined properties. These predictive techniques are based on machine learning strategies. The efficiency 
of the proposed approach is illustrated by comparing the results of predicting the properties of new substances 
with experimental data. Examples showing the application of these techniques to the prediction of those materials 
used in the electronics industry are described. Also discussed are the components and the organization of the 
computer-aided information-predicting system developed by the Institute of Metallurgy of the Russian Academy 
of Sciences. A detailed description of the databank for the properties of the ternary inorganic phases is provided, 
as well as an explanation of the main difference between the information-predicting system and the expert 
systems. 

1. Introduction 

The problem of the computer-aided design of new 
materials has two aspects. The first is the prediction 
of compounds, not yet synthesized, which would have 
predefined properties. The second aspect is the search 
for optimum conditions for the production of the new 
materials with the aim of optimization of the desired 
properties. In most cases these two problems can be 
successfully solved by applying the cybernetic-statistical 
approach as outlined by Savitskii et al. [1]. The principal 
idea of this approach is the combination of the cybernetic 
prediction methods used to solve the first problem and 
the statistical methods of design of the required ex- 
periments (or other methods of optimizing) that provide 
the solution for the second problem. Experiments aimed 
at the application of such an approach have been 
successful and described elsewhere [1]. 

In this study we describe the cybernetic prediction 
of substances (with desired properties), not yet syn- 
thesized, and the extension of this approach to designing 
a new class of information-predicting systems, for use 
in materials science. 

Initially the idea of machine learning, to recognize 
patterns, for predicting new inorganic binary phases 
was proposed by Savitskii et al. [2]. These concepts of 
machine learning emerged as a result of the advances, 
at that time, in computational power, and in the ap- 
plication of this computational ability to process in- 
formation. These developments aided the implemen- 
tation of algorithms for the prediction of unknown 
inorganic phases. This method of predicting new ma- 

terials using machine learning strategies has been termed 
the "cybernetic prediction of inorganic compounds" 
[1], to distinguish it from quantum mechanical, statistical 
and other empirical approaches [3-7]. 

2. Concepts for the cybernetic approach 

The foundations of the cybernetic prediction of in- 
organic compounds are based on Mendeleev's law which 
asserts that the periodic nature of changes in the 
properties of chemical systems depends on the nature 
and properties of the elements which make these systems 
(compounds, solutions and the like). Another premise 
justifying the proposed approach is the existence of 
good classification schemes for inorganic substances. 
The problem of predicting new compounds was reduced 
to the analysis of the multidimensional array of property 
values and the column vector of the desired properties. 
Each row corresponds to some known physicochemical 
system, whose class is indicated by the row position of 
the column vector. The process of analysing all this 
information, aimed at finding the classifying regularities, 
with the help of special programs is referred to as 
machine learning. By substituting the values of the 
properties of the components of the unknown system 
in the regularity thus found, it is possible to determine 
the class. The implementation of this stage, called the 
prediction, requires only the knowledge of the values 
of the component properties. 

The problem of prediction is easy to solve if there 
are enough objects (examples of systems belonging to 
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different classes) for machine learning, and the clas- 
sification is of a qualitative nature (e.g. type of phase 
diagram, crystal chemical classification and the like). 
The problem is more difficult to solve when some 
quantitative values are to be estimated (for example, 
the phase transition temperature and pressure formation 
enthalpy). Before applying machine learning strategies 
in such a case it is advisable to find the threshold 
values of the object function characteristic of the par- 
ticular data array. In the latter case the problem is, 
as a rule, solved by the methods of cluster analysis 
(automatic classification). However, sometimes, as in 
the case of estimating the critical temperature of tran- 
sition to the superconducting state, for example, it 
becomes necessary to proceed from the practical re- 
quirements and to use the known threshold values, e.g. 
boiling point temperatures of helium and nitrogen. 

To discuss, in brief, the methods of machine learning, 
it must be pointed out that since there are very many 
aspects in this domain of artificial intelligence no criteria 
for selecting the most suitable algorithm for a particular 
application are available. After testing many programs 
intended for machine learning applications we fixed on 
the class of algorithms in which all classifying regularities 
which are found could be presented in the form of a 
boolean expression. This choice proved to be correct, 
since it is acceptable practice when developing expert 
systems to make use of logical functions to represent 
the knowledge. 

The implementation of the machine learning logical 
algorithms directly involves decreasing the number of 
searches in the process of forming the classifying reg- 
ularities. The algorithm's inductive concept formation 
[8], which we have used for nearly 20 years, solves this 
particular problem by structuring the computer memory 
in the form of semantically growing pyramidal networks. 
The construction of such a network during the input 
of the objects is followed by studying it, i.e. by singling 
out the control nodes and determining the class to 
which the objects belong. It must be remembered that 
each object (physicochemical system) is put in as a set 
of values of the component properties with an indication 
of the class to which the system belongs. The resultant 
classifying regularities can be stored in computer mem- 
ory and printed or read out in the form of a learned 
semantic network or an equivalent boolean expression 
in which the values of the component properties make 
the variables. During the prediction process the com- 
puter receives the atomic numbers of the elements or 
designations of simple compounds, while the values of 
the properties of the appropriate elements or simple 
compounds are automatically extracted from the da- 
tabank. After their sampling by means of a special 
program [9] they are substituted in the classifying 
regularity in which they fall and the researcher can 

easily obtain the necessary prediction. 
An important problem of any computer classification 

is the choice of the properties for the description of 
physicochemical systems. This procedure can hardly be 
formalized completely, but the machine learning al- 
gorithm we use automatically rejects those properties 
which have no importance for the classification process. 
The initial set of the properties for the computer-aided 
analysis is prepared by the materials scientist and it 
is desirable that the artificial intelligence system ex- 
trapolates information from this representative set of 
characteristics. 

One interesting feature of these algorithms [8, 9], 
specifically adapted for chemical application, is their 
ability to function adequately with incomplete property 
information or ranges where no information exists, e.g. 
melting point of carbon at atmospheric pressure. 

3. Choice of property 

We have shown [10] that all fundamental properties 
of the chemical elements are essential for this machine 
learning process, e.g. distribution of electrons over the 
energy shells of isolated atoms, ionization potentials, 
ionic, covalent and atomic radii, melting points, and 

\standard entropies of individual substances. In addition, 
all properties of simple compounds, oxides, chalco- 
genides, halides, etc., are included as required by the 
composition of the compounds to be predicted. 

Using these concepts we have successfully solved the 
following problems [10-15]: (1) prediction of compound 
formation or non-formation for ternary systems; (2) 
prediction of the possibility of forming ternary and 
more complicated compounds of desired composition; 
(3) prediction of phases with definite crystal structures; 
(4) estimation of phase quantitative properties (critical 
temperature of transition to superconducting state, 
homogeneity region etc.). 

Unless otherwise specified, the prediction is con- 
ducted for the physicochemical systems at normal con- 
ditions, for example, the prediction of a phase at normal 
pressure and room temperature. In order to predict 
compounds which exist under different experimental 
conditions (e.g. high pressure), it is necessary to enter 
the data on known compounds which exist under those 
experimental conditions (e.g. high pressure) into the 
"learning step" and to add the experimentals condition 
(e.g. pressure) as a parameter into the description. 
Unfortunately, a majority of the experimental mea- 
surements of compound properties are conducted for 
incomplete equilibrium. In addition, the determination 
of the crystal structure of a given compound is not, 
very often, undertaken in conjunction with its phase 
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diagram investigation. Therefore, it is not always clear 
under what conditions a specific crystal modification 
of a compound (polymorphism) is stable. 

By applying the cybernetic approach described above 
we have predicted the formation of thousands of new 
compounds in ternary, quaternary and more complicated 
systems. These compounds were then searched for new 
semiconductors, superconductors, ferroelectrics, mag- 
nets and other materials required for new technologies 
[1, 10-15]. The comparison of these predictions with 
the experimental data, obtained later, showed [10] that 
the average reliability of predicted ternary compounds 
exceeds 90%. Such a high accuracy for a priori pre- 
dictions is not ensured by any other known theoretical 
method. 

Illustrated in Fig. 1 is the comparison between the 
results of predicting the compounds of the form ABS2 
[11] and the new experimental data. These compounds 
are of some interest in the search for new semiconductor 
materials. Out of 29 predictions checked, only 2 were 
detected to be in error. Recently we have reconfirmed 
the results of the predictions of the phases of this 
composition using new data [10]. In the process of our 
further studies aimed at searching for new magnetic 
substances [12] we predicted compounds with their 
crystal structure resembling the Heusler alloys and 
ThCr2Si2. Shown in Fig. 2 is a part of the table illustrating 
predictions of the Heusler alloys with composition ABzIn 
[13]. Of the 21 compounds studied recently, 19 com- 
pounds coincided with those predicted by us. Figure 
3 shows the results of comparing the predicted phases 
of composition ABESi 2 with structure type YhCrzSi 2 
[14] with the experimental data. Of 71 checked pre- 
dictions, 68 agreed with the experimental data, i.e. a 
prediction error of 4%. 

The results of predicting new superconductors [1, 
10, 15] are also significant practically. Recently we have 
attempted to predict the compounds with the structure 
of T, T' and T* phases belonging to promising classes 
of high temperature superconductors. 

The best criterion of correctness for any theoretical 
method is the experimental validation of the prediction. 
The experimental validation of our theoretical results 
has shown that this method of cybernetic prediction is 
a useful tool for materials scientists and chemists con- 
cerned with the a priori prediction of inorganic sub- 
stances which would have predefined properties. 

4. Information-predicting computer system 
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Fig. 1. Part of a two-dimensional plot illustrating the prediction 
of compounds with the composition ABS2: +, predicted formation 
of compound with composition ABSz; - ,  prediction of no com- 
pound with composition ABS2; ¢, compound ABSz is formed 
and this fact is used in the machine learning process; O, compound 
A B S  2 is not formed and this fact is used in the machine learning 
process; O, predicted formation of compound with composition 
ABS2 which is confirmed by experiment; *, predicted formation 
of compound with composition ABS2 which is not confirmed by 
experiment. 

For the purpose of our studies in this field we 
developed an information-predicting computer system. 
This system is based on cybernetic predicting concepts, 
discussed in detail above, and employs a database of 

inorganic compounds properties and a predicting sub- 
system (see Fig. 4). The system is developed for the 
IBM PS/2 computer operating under MS-DOS. 
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Fig. 2. Part of a two-dimensional plot illustrating the prediction 
of Heusler phases with the composition AB2In: + ,  formation of 
compound with the particular type of crystal structure is predicted; 
- ,  formation of compound with the particular type of crystal 
structure is not predicted; @, compound with the particular type 
of crystal structure was synthesized and appropriate information 
was used in the machine learning process; e ,  compound with 
the particular type of crystal structure does not exist under normal 
conditions and this information was used in the machine learning 
process; O, predicted formation of compound with the particular 
type of crystal structure which was confirmed by experiment; *, 
predicted formation of compound with the particular type of 
crystal structure which was not confirmed by experiment. 

The Institute of Metallurgy of Russian Academy of 
Sciences is now building the database of inorganic 
compound properties. This database contains the prop- 
erties of the ternary compounds [16-18]. 

4.1. Database of inorganic compounds 
The database containing the properties of inorganic 

compounds is a collection of interrelated data files 
intended for the use by both scientists and engineers. 
The database in operation contains the information 
about the properties of known ternary compounds (i.e. 
of compounds that comprise three chemical elements). 

4.1.1. Phase subsystem 
The database master file (the "phases" subsystem) 

contains the fundamental properties of the phase. This 

is a document that contains brief information about 
the ternary system (the temperature of the studied 
isothermic sections, designation of known quasi-binary 
sections, quantity of the ternary compounds etc.), as 
well as the following information about the ternary 
compounds: (1) qualitative and quantitative composition 
of the compound; (2) type of melting (congruent or 
incongruent) at 1 atm; (3) melting point (at 1 atm); 
(4) boiling point (at 1 atm); (5) decomposition tem- 
perature in the solid or gaseous state (at 1 atm); (6) 
type of crystal structure (the information about each 
crystal modification is as follows: (1) temperature and 
pressure to be exceeded to ensure the formation of 
the particular crystal modification; (2) syngony; (3) 
space group; (4) Z (number of formula units in unit 
cell)). In addition, each crystal modification of the 
superconducting compounds requires the information 
that belongs to the "superconductors" subsystem as 
indicated below: (1) critical temperature of transition 
to the superconducting state; (2) upper critical magnetic 
field at 4.2 K. 

4.1.2. Property subsystem 
The concept of an inorganic property database implies 

that apart from the information on the fundamental 
properties, additional information is stored on phases 
which have practical value. At present, this additional 
information covers ternary compounds which possess 
acousto-optical, electro-optical and non-linear optical 
properties. This particular subsystem stores the fol- 
lowing data on compounds with definite composition 
and point group symmetry and possession of the above 
properties: (1) indices of refraction depending on the 
radiation wavelength; (2) coefficients of thermal ex- 
pansion depending on temperature; (3) coefficients of 
thermal conductivity depending on temperature; (4) 
dielectric coefficients depending on the frequency of 
the electric field applied; (5) electro-optic coefficients 
depending on the radiation wavelength; (6) non-linear 
optical coefficients depending on the radiation wave- 
length; (7) dielectric losses (the tangent of the dielectric 
losses depending on the frequency of the electric field 
applied); (8) transmission band; (9) angle of synchron- 
ism; (10) solubility in water at room temperature; (11) 
heat capacity depending on temperature; (12) piezoe- 
lectric coefficients; (13) elastic constants; (14) elasto- 
optic coefficients depending on the radiation wave- 
length; (15) elastic wave velocity depending on the 
direction and type (longitudinal or transverse) of the 
elastic wave; (16) damping factors of the elastic wave 
in a crystal at a fixed frequency, depending on the 
direction and type of the elastic wave; (17) lattice 
parameters; (18) density; (19) Curie point. 
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Fig. 3. Part of two-dimensional plot showing the comparison of the predicted phases of composition AB2Si 2 with the ThCr2Si 2 
structure type: O, predicted absence of compounds with the particular type of crystal structure was not confirmed by experiment; 
see Fig. 2 for other symbols. 

4.1.3. Bibliographic subsystem 
This subsystem contains the references to the pub- 

lished literature from which the properties and other 
experimental data have been extracted. This subsystem, 
called "References" contains the following information: 
(1) author's name; (2) journal reference; (3) title of 
the article; (4) reference to the abstract bulletin. 

At present this database contains information on 
about 35 000 ternary compounds taken from 9000 pub- 
lications. The collection and evaluation of data on the 
properties of binary and quaternary compounds is in 
progress. Access to and use of this system is menu 
based. 

4.2.2. Conversational processor 
This manages the conversation of the user with the 

information-predicting system, as well as giving expert 
function support in the given application domain. 

4.2.3. The monitor 
This controls the computation process and provides 

the interface between the functional subsystems as well 
as the telecommunication access to the system. In 
addition, the monitor signals if new experimental data 
contradict the predicted multidimensional criteria. Such 
contradictions will be eliminated by including the new 
data in the "learning step" and modifying the multi- 
dimensional criteria in the knowledge base. 

4.2. Predicting subsystem 
The new perspectives of our studies in this field 

involve the development of a predicting subsystem based 
on the cybernetic predicting system as discussed above. 
This subsystem employs a knowledge base, a conver- 
sational processor and a monitor. 

4. 2.1. The knowledge base 
This stores the multidimensional criteria (classifi- 

cation rules) already obtained for various classes of 
inorganic compounds for their use in the prediction of 
phases and forecasting. The knowledge base data are 
represented in the form of semantic networks or of 
their equivalent conjunctive-disjunctive logical expres- 
sions. 

5. Operation of the information-predicting system 

The information-predicting system operates as follows 
(Fig. 4). The user requests the information about an 
existing compound of certain composition. If the data 
about this phase are stored in the database they can 
be extracted and used for further studies. If no in- 
formation about the compound is stored in the database, 
or if the information available is incomplete, the com- 
puter in response to the user's request determines 
whether the regularity corresponding to the desired 
property for a compound of a certain type is present 
in the knowledge base. If the phase is present, the 
database supplies the appropriate set of the component 
properties to ensure the prediction of the desired 
characteristic. If the knowledge database does not have 
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Our information-predicting system differs from con- 
ventional expert systems [19-23, 24] in that it employs 
an unusual procedure for receiving the knowledge from 
the experts and its subsystem of explanations is of a 
rudimentary nature. From our experience we find that 
any attempt to make a chemist offer an adequate 
explanation of the causes of the formation of one phase 
or another, or the nature of some properties of a 
compound, usually ends in failure. Instead, the chemist 
prefers to estimate the authenticity of data concerning 
the existence of the given compound or the values of 
the particular phase properties. While allowing for the 
specific features of this application domain we aban- 
doned the idea of making the chemist outline the rules 
for the formation of inorganic substances with desired 
properties and decided to make use of the chemist's 
expert estimation of the data intended for machine 
learning. 

Fig. 4. Schematic diagram of an information-predicting system. 

the desired regularity then the examples for the machine 
learning process are searched in the database. The 
correctness and representation of these results are 
estimated once more by the user and, if the sample 
is found adequate for machine learning, the learning 
and prediction subsystems process them in turn. The 
resultant prediction is received by the user while the 
classifying regularity thus shaped becomes stored by 
the knowledge base. The above example is the simplest 
of the problems than can be solved by the information- 
predicting system. A more complicated problem would 
be, for example, predicting all possible phases in ternary 
and multicomponent systems combined with the esti- 
mation of their properties. If the previous problem has 
a time complexity of O(n), the latter problem has a 
time complexity much greater than O(n). 

The principles underlying the information-predicting 
system at present developed have been tested suc- 
cessfully [13] on the prototyping system supported by 
the BESM-6 second-generation computer. 

This information-predicting system is a modified ver- 
sion of expert systems which find wide-ranging appli- 
cation both in science and in other problem-solving 
arenas. Such systems are widely used in chemistry, 
particularly in organic chemistry. The first expert systems 
SYNCHEM [19] and DENDRAL [20] were developed 
for the use in planning organic synthesis and interpreting 
spectral data about organic compounds. In inorganic 
materials science work in this field has just started. In 
France and Belgium there are expert systems for solving 
the problems of corrosive resistance of metals and alloys 
[21-23]. 

6. Conclusions 

In this process of automating certain aspects of 
scientific research ranging from the development of the 
databanks to the building of expert systems, the historical 
process of cognition is repeated: from collection and 
processing of the empirical source data to the gen- 
eralization of the experimental facts. The latter is used 
as a basis for constructing the scientific theories re- 
flecting the fundamental relations and correlations be- 
tween the processes and phenomena studied. The de- 
velopment of artificial intelligence systems, such as 
information-predicting or expert systems, is indicative 
of the advent of a new type of modelling of cognitive 
activity [24], or knowledge engineering. This type of 
modelling will play an important role in the fields of 
science and technology where mathematical modelling 
and computer-aided experimentation prove to be in- 
adequate (in chemistry and materials science). 
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