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Introduction
There have been many achievements in

the last decade in the development of ma-
terials science, chemistry, and physics (ex-
perimental and theoretical). However, the
most difficult problem—calculating the
intrinsic properties of multicomponent
compounds starting from the knowledge
of their constituent components' proper-
ties—still remains unsolved. Calculations
or predictions based on only the proper-
ties of constituent components (or simply,
properties) are called a priori calculations
or predictions. These difficulties are due
to the solution of mathematical problems
arising in the quantum mechanical calcu-
lations of multi-electronic systems. As a
result, scientists make use of many em-
pirical prediction methods that use exist-
ing regularities from a variety of property
data. Some of the empirical criteria for the
formation of compounds with predefined
properties use the rules of Hume-Rothery,1

Laves,2 Mathias,3 Goldschmidt,4 Villars,5

and Darken-Gurry.6

The main problem of finding such crite-
ria (classification rules) is the search for
the appropriate parameters (expressions)
of its constituent components with which
it would be somehow possible to divide
the physico-chemical systems into distinct
domains. The advantage of such criteria
consists in its simplicity and the ability to
visualize the results with the help of two-
dimensional plots. Often, however, the
separation into distinct domains using
these two-dimensional plots is deficient
because other properties of the constituent
components come into play. In addition,
the two-dimensional criteria quickly lose

their reliability when new data do not eas-
ily fit within the framework outlined by
the classification rules. An ideal classifica-
tion scheme must be adaptable to new
phenomena, have a flexible structure, and
be useful for recognizing new properties.
Such a classification scheme will not re-
strict itself to the narrow boundaries of
two-dimensional criteria (two-parameter
planes). The search for multidimensional
criteria (classification rules) could work
with the aid of computer learning tech-
niques in conjunction with databases, e.g.,
crystallographic, phase diagram, and
physical properties.

In principle, there are three ways to
predict new inorganic compounds and
forecast their intrinsic compound proper-
ties, based on the knowledge of their con-
stituent component properties:
• quantum-mechanical calculations,
• two-dimensional criteria (classification
rules) found by semi-empirical approaches,
and
• multidimensional criteria (classification
rules) found by computer learning tech-
niques (computational methods for acquir-
ing new knowledge, new skills, and new
ways to organize existing knowledge).

It should be emphasized that, until re-
cently, the quantum mechanical calcula-
tions have failed to bring about a single
prediction of new compounds that would
be valuable to inorganic materials science.
This situation will not change much in the
near future. The two-dimensional criteria
approach, however, is more efficient, but,
in my opinion, not sufficiently flexible and
comprehensive. The multidimensional cri-

teria approach (cybernetic) is more suitable
for a priori prediction of inorganic com-
pounds. The first experiments using com-
puter learning methods to search for
multidimensional criteria for the formation
of the binary phases7 have been productive.

Concepts of the Cybernetic
Approach

The advantages of using computer learn-
ing procedures to search for multidimen-
sional criteria are apparent. They consist of
(1) analyses of large databases and (2) com-
puter learning methods to locate many
and complex criteria.

Locating and analyzing such criteria is
a computational task. For example, let a
certain phenomenon be described by N
properties X\,x^..., xH, each of which has
k discrete values (Xif, i = 1, 2. . . , N; j; = 1,
2. . . , k). If we assume that the formation
of a certain type of the crystal structure of
a given class of compounds depends on
the properties of its constituent chemical
elements, then the traditional way of rep-
resenting the semi-empirical, two-dimen-
sional criteria can be reduced to a Boolean
expression that takes the form

(x12 & X34) V (xn & Xr, & x32) & NOT

(X u & X25 & X37) V (X lk & Xj, & Xm), (1)

where x,j is the magnitude of the interval
of the change of i properties or algebraic
functions of these properties; and &, V,
and NOT are respectively the symbols for
the conjunction, disjunction, and negation
operators. In the case of a semi-empirical
analysis of the information, due to human
limitations, the number of the simple con-
junctions in Expression 1 does not exceed
five or six, each conjunction having not
more than three or four values. Even
though the form of Expression 1 is un-
usual, all known semi-empirical rules can
be well-described by it, e.g., Hume-Rothery,
Laves, Mathias.

The cybernetical way of searching for
the criteria consists of solving complicated
criteria of the type

( x u & X26 & x « , . . . & XiW) V (X29 & X33 & *4s)

V.. .V (x.w & Xes & . . . & xm) (x2k & x37)

V ( X 1 8 & X 4 8 & . . . & X M )

V (x17 & x ^ & . . . & X79) • • • & NOT (xs). (2)

In this case, the complexity and the
number of the conjunctions are limited
only by the storage capacity of the com-
puter. Computer learning strategies are
used to search for the multidimensional
criteria of Equation 2. As input, we use ex-
perimentally known compounds that pos-
sess the predefined property of interest, as
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well as examples of the experimental
knowledge of the absence of such com-
pounds (i.e. knowledge of compounds not
formed). All this information makes up
the "learning step" (which includes the ac-
quisition of knowledge, the development
of cognitive skills through practice, the
organization of new knowledge, and the
discovery of new facts through observa-
tion and experimentation). Therefore, the
method is an alternative learning method.

The principal difficulty of the direct-
search multidimensional classification lies
in the great number of searches in the se-
lection of the simple conjunctions charac-
teristic of a given class. In fact, if we have
N properties of the constituent components,
each of which can take k values, then the
number of possible searches is equal to
2N . So, looking at only ten such properties
with ten discrete values, the number of
searches would be much too large for prac-
tical applications. To reduce the number of
searches, we use the Devingtal algorithm.̂ 9

This algorithm, used for predicting the bi-
nary compounds, restricts the complexity
of the searched conjunctions of the prop-
erties of its constituent components; this,
naturally, affects their prediction capabil-
ity. The Gladun algorithm,10 which we use
for predicting ternary and more compli-
cated phases, appears more promising here.
For reducing the number of searches, this al-
gorithm uses a specially developed method
of structuring computer memory in the
form of growing pyramidal networks in
which the lengths of the searched con-
junctions are not reduced.

With the help of the Gladun algorithm
we have predicted thousands of not-yet-
synthesized compounds in ternary, qua-
ternary, and more complicated systems.11"27

Comparing our predictions with new ex-
perimental data shows that the average
reliability of the prediction is about 90%
(Table I).

Problems for Which the Cybernetic
Approach Can Be Applied

The prediction of new compounds can
be divided into three subproblems:
• Prediction of predefined compositions.
• Prediction of the crystal structure of
compounds.
• Estimation of other properties (such as
critical temperature of transition, super-
conducting state, melting or boiling points,
formation heat, etc.).

Unless otherwise specified, the predic-
tion is conducted for the physico-chemical
systems kept at normal conditions, for ex-
ample, the prediction of a phase at normal
pressure and room temperature. In order
to predict compounds that exist (e.g., high
pressure), it is necessary to enter the data

on known compounds that exist at high
pressures into the "learning step" and add
the pressure as a parameter into the de-
scription. Unfortunately, a majority of the
experimental measurements of compound
properties are conducted at incomplete
equilibrium. In addition, the determina-
tion of the crystal structure of a given
compound is not often undertaken in con-
junction with its phase diagram investiga-
tion. Therefore, it is not always clear under
what conditions a specific crystal modifi-
cation of a compound (polymorphism) is
stable. The standardization of the presenta-
tion of data for compound properties is a
task for the future; meanwhile, in select-
ing examples for computer learning, we
have to run a risk—which is not always
rewarding.

The cybernetic approach based on com-
puter learning for predicting new inorganic
phases and estimating their properties is
as follows:

1. Selection of the examples for com-
puter learning and selection of the proper-
ties of the constituent components to be
used for computer entry of these examples.
The learning samples are given as input
for the computer in the form of the matrix
M X N, where M is the number of ex-
amples for computer learning and N is the
number of properties of the constituent
components.

2. Computer learning consists of the
construction of multidimensional criteria
(classification rules).

3. Prediction of unknown phases is done
by substitution into the multidimensional
criteria using only properties of the con-
stituent components of non-investigated
systems.

For the selection of the properties of the
constituent components, we provide some
important examples:15

1. the distribution of electrons in the en-
ergy levels of separate atoms, the formal
valences of elements in compounds (from
electroneutrality considerations) and, for
prediction of the type of crystal structure,
the covalent or ionic (for oxide systems)
radii of elements (cations in oxides);

2. the first four ionization potentials, the
standard isobaric thermal capacities, the
types of incomplete electronic shells, the co-
valent or ionic (for oxides) radii of the ele-
ments (cations), and the formal valence of
the element in the compound;

3. the covalent (or ionic) radii, the en-
thalpies of the formation of simple oxides
(sulphides, selenides, tellurides), the en-
tropies of simple sulphides (selenides, tel-
lurides) under standard conditions, or the
thermal capacities of simple oxides and
the formal valences of elements (in oxide
compounds).

A fourth system of properties was used
in predicting the availability and proper-
ties of complex chalcogenides:

4. the types of incomplete electronic
shells, the electronegatives, the covalent
radii, the formal valences exhibited in an
AB2X4 compound, and the enthalpies of
formation of corresponding simple sul-
phides (selenides, tellurides) under stan-
dard conditions.

Constraints of the Cybernetic
Approach

The method of the cybernetic predic-
tion of inorganic compounds offers the ca-
pability to predict new compounds with
predefined properties. However, like any
predictive technique, this method reflects
the state of the art of the science of com-
pounds and information science, and is
therefore not free from defects. To im-
prove the reliability of the predictions, we
must describe the most important prob-
lems and suggest ways to solve them.

It is useful to bear in mind that this
method of cybernetic prediction cannot
predict a new physical phenomenon. The
method is intended for the search of the
physico-chemical systems similar to those
already well-known.

The problems arising in making cyber-
netic predictions on the basis of the meth-
ods of computer learning are mainly as
follows:
• Selection of the compounds for the
"learning step" is the most difficult and
least formalized task. The developed data
bank containing ternary compound prop-
erties28"31 does reduce the otherwise time-
consuming search for information but it
does not guarantee that these experimental
values are correct. It must be stressed that
incorrect experimental data, used in com-
puter learning, constitute the major source
of prediction errors. Often data indicating
the absence of compounds may be incor-
rect. These occurrences lead to a decrease
in the reliability for the prediction of the
absence of compounds in other systems.
• Selection of the relevant properties of
the constituent components for the de-
scription of the systems. The proper choice
of the relevant properties is directly linked
with the probability of the correct classi-
fication. Despite the fact that the Gladun
algorithm is a powerful tool for the as-
sessment of the informative combinations
of the values of these properties, the "non-
informative" combinations of the physico-
chemical systems considerably weaken the
results of the predictions. The procedures
for the proper choice of the relevant com-
ponent properties, addressed by Savitskii
et al." are:

a. An expert assessment of the proper-
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ties using theoretical knowledge of mod-
ern physics and chemistry. This is not the
best approach, since unwarranted weight
is given to properties that the expert
knows best. In addition, any property of
the compounds, as a rule, contains a cer-
tain amount of information in only a nar-
row interval of change.

b. A computerized search, based on
Gladun's algorithm, to find the relevant
combinations of the given values of the
properties of the components.

c. Automatic generation of a wide vari-
ety of algebraic functions from the initial
component properties and selection of the
most informative combinations for formu-
lating criteria. The solution of the last

problem requires high-performance com-
puters with a great amount of storage.
• From our experience the methods best
suited for computer learning involve the
use of logical expressions."1 Their impor-
tant feature is that they process only sym-
bolic discrete values of the constituent
component properties. On one hand, it al-
lows the use of both numeric and sym-
bolic properties and disregards absent
(not-measured) values of properties in the
description of the physico-chemical sys-
tems. On the other hand, unsatisfactory
quantization of continuous constituent
component properties (e.g., ionization
potentials, radii, etc.) sharply weakens
separability of the classes. To represent a

continuous constituent component prop-
erty by dividing it into a fixed number of
intervals was often ineffective. To solve
this problem we are developing a group
of the sampling algorithms32 specially as a
subsystem of the preprocessing informa-
tion for the computer learning system.10

Perspectives of
Information-Predicting Systems

New perspectives of our studies in
this field involve the development of an
information-predicting computer system.
This system is based on the cybernetic
predicting subsystem, as discussed. In ad-
dition, this information-predicting system
employs a data bank of inorganic com-

Compounds/Systems

ABO2

ABO3

ABO;,

ABO4

AB2O4

AB2O4

A2B2O7

A2B2O7

ABD2

Table 1: Characteristics of the Prediction Results for Ternary Phases

Characteristics to be Predicted
Possibility of formation of
compounds
Possibility of formation of
compounds
Perovskite structure type
Possibility of formation of
compounds
Possibility of formation of
compounds
Spinel structure type
Possibility of formation of
compounds
Pyrochlore structure type
MnCu2Al structure type

Number of Predictions
Tested for November 1,1992 Reliability of Prediction

104

168

115
125

130

99
83

69
45

95

88

77
98

95

93
77

88
91

References
18

17

17
17

17,18

17,19
20

20
21,22

(D = Al, Co, Ni, Cu,
Ga, Pd, In)
AB2D2

(D = Si, P, Ge, As, Sb)
A(Hal)-B(Hal)3

AB(Hal)3

AB2(Hal)4

AB(Hal)4

(Hal = F, Cl, Br, I)

A2BX2 (X = S, Se)

ABX2

ABX3

AB2X4

AB2X4 (X = S, Se)

Ax(SO4)y • BZSO4)W

A(NO3)X • B(NO3)y

ThCr2Si2 structure type

Systems with compounds
Possibility of formation of
compounds
Possibility of formation of
compounds
Possibility of formation of
compounds
Possibility of formation of
compounds
Possibility of formation of
compounds
Possibility of formation of
compounds
Possibility of formation of
compounds
Structure types
Possibility of formation of
compounds

129

93
113

70

195

20

172

55

350

165
80

93 20-25

93
92

81

93

95

88

91

81

94
94

26
26

26

27

11

11,28

11

11, 29, 30

11,19, 30
31
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pounds properties (produced by the In-
stitute of Metallurgy, Russian Academy of
Sciences), a knowledge base, a conversa-
tional processor, and a monitor.1"'51''3 The
database now contains information on
about 35,000 ternary compounds taken
from 9,000 publications.28"31 The collection
and evaluation of data on the properties
of binary and quaternary compounds is in
progress.

The Knowledge Base
The knowledge base stores the multi-

dimensional criteria (classification rules)
already obtained for various classes of in-
organic compounds for their use in the
prediction of phases and forecasting. The
knowledge base data is represented in
the form of semantic networks or of their
equivalent conjunctive-disjunctive logical
expressions.

Conversational Processor
The conversational processor manages

the conversation of the user with the
information-predicting system, as well as
giving expert function support in the
given application domain.

The Monitor
The monitor controls the computation

process, provides the interface between
the functional subsystems, and provides
telecommunication access to the system.
In addition, the monitor signals if new ex-
perimental data contradicts the predicted
multidimensional criteria. Such contradic-
tions will be eliminated by including the
new data in the "learning step" and modi-
fying the multidimensional criteria in the
knowledge base.

Conclusions
The employment of the information-

predicting system for the prediction of
the formation of unknown inorganic com-
pounds with predefined properties—with
the help of multidimensional criteria and
given the interdependence of some of these
relationships — can be performed only by
artificial intelligence systems. The devel-
opment of such an information-predicting
system opens new perspectives in the
computerized design of substances with
predefined properties.
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