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Abstract

Problems associated with the design of new materials can be divided into the search for new materials with predefined properties, and
the search for optimum processing conditions for the production of new materials. We use artificial intelligence methods for solution of
the first problem, which requires knowledge of values of the elements’ properties for prediction. The comparison of predictions with
experimental data shows that the average reliability of the prediction exceeds 80%. Several tables of predicted compounds are presented

II IIIrelative to predictions of the crystal structure type ThCr Si for compounds with composition AB Si and A B F . For the solution to2 2 2 2 5

the second problem, we briefly discuss two methods we have used for optimizing the process for producing materials which have been
predicted.  1998 Elsevier Science S.A. All rights reserved.
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1. Introduction What is this knowledge and experience of a chemist?
First, it contains a set of experimental facts (property

Before speaking about the problem of computer design values of substances, process parameters, etc.). Second, it
of materials, we shall dwell on conventional methods contains regularities connecting and/or systematizing these
applied to the search for new inorganic substances. The facts and determining the ways and limitations for applica-
first method is casual discovery of new properties applied tion of either method used in chemical practice. Men-
frequently to well known substances. For example, in 1911 deleev’s periodic law is a most remarkable example of
Kamerlingh Onnes obtained the effect of superconductivity knowledge of the second kind. Translated into computer
in mercury, Kerr obtained a quadratic electro-optical effect language, it is possible to consider a database as a
in 1875, and later Rontgen and Kundt a linear electro- repository of knowledge of the first kind (facts) and a
optical effect in quartz and tourmaline. This approach is knowledge base, a compulsory component of an artificial
similar to the ‘trial-and-error’ method. The second method intelligence or ‘expert’ system, which is quite appropriate
has a more rigorous scientific basis and is connected with for the storage of regularities and rules. This expert system
the search for analogs of known compounds for the approach, referred to as computer design, is focused on
purpose of improvement of their parameters. The scientific new inorganic materials and simulates a conventional way
basis of such searches is a paradigm which dominates of searching for new materials with predefined properties
modern science, e.g., conservation laws, concepts about an where the new materials are analogs to materials already
intrinsic structure of substances and bond types of atoms, known. In this paper, the development of an expert system
as well as the set of empirical and semi-empirical knowl- for the design of new inorganic materials, its components,
edge accumulated by chemistry and materials science. and preliminary results achieved by realization of the
Unfortunately, modern physics gives in a form suited for proposed ideas are presented and discussed.
chemists only the paradigm, but not the methods of new
substance calculation. Quantum mechanical calculations,
although striking to the chemist’s imagination, are very 2. Databases
difficult in the case of practical new substances. As a
result, many chemists continue to use only their knowledge A materials database (DB) is a critically important
and experience for developing substances. component of any system for inorganic materials design. It

can be a part of a larger DB or an independent information
*Corresponding author. system. It is important in calculations that high quality data
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be used, which requires expert assessment of the stored in the compound) or functions of their parameters (well
information. Although this introduces an additional prob- known Darken–Gurry rules for the prediction of metal
lem in finding such experts, the reliability of experimental systems with continuous solid solutions [7], Mathias rule
data is increased significantly. It should be noted that the for the prediction of superconductors with A-15 crystal
expert assessment of data is a feature of all DBs developed structure [8], Hume-Rothery rules for the prediction of the
by us. The DBs were developed for IBM PC computer. solubility of metals in the solid state [9], Goldschmidt rule
The most interesting of them are the following: for the prediction of new oxides with perovskite structure

[10], QSD-method for the prediction of new ferroelectrics
1. An inorganic ternary compound properties DB was with ABO composition and other substances [11], and so3

built by us in the 1970’s [1,2]. It contains information on). These elemental properties are important but this list
on more than 37 000 ternary compounds taken from is not limited by these parameters of the elements for
more than 10 000 publications. Some of the data has prediction in inorganic chemistry, i.e. the choice of these
been assessed by materials experts. properties is only a tradition.

2. A phase diagram DB of material systems with inter- In addition, it is impossible to speak about the impor-
mediate semiconducting phases contains information on tance of an individual property in the whole range of its
physical–chemical properties of the intermediate phases values. As a rule some property is of importance for
[3] and the most important Pressure–Temperature– classification in only a certain range and for the substances
Concentration phase diagrams of semiconducting sys- of a certain kind. In most cases, chemical phenomena are
tems evaluated by qualified experts. Currently the DB determined by a set of properties and thus, it makes sense
contains information on several tens of semiconducting to speak only about importance of set intervals of prop-
systems. erties. The search for such multi-dimensional regularities is

3. An acousto-, electro-, and nonlinear-optical properties a complicated problem for chemists. Therefore we con-
[4–6] DB which contains information on crystals cluded that the process of search for multi-dimensional
evaluated by experts. In addition, DB includes exten- regularities connecting properties of substances with com-
sive graphical information about the properties of the ponent parameters should be executed by a computer. A
materials. This version of the DB was developed for typical problem for chemists is the assessment of initial
platform independence using DBMS Oracle. In addition data and the subsequent interpretation of observed reg-
to a DB in Russian, a version in English also has been ularities. In addition, it would be desirable if the chemist
developed. had generated an initial set of component properties. In this

case the computer should choose the most important
features from the properties.

3. Search for regularities and prediction of new
materials

4. CONFOR – a classification and prediction system
The search subsystem for discovering regularities in the

information stored in a DB is the most complicated part of We use the methods of artificial intelligence (AI), more
a system for computer design of materials. The problem of specifically, machine learning based on examples of al-
new materials design can be divided into two parts: (1) the ready known substances in the search for regularities. The
search for new substances with predefined properties, and method is based on concept formation ideas [12–15] and
(2) development of optimum conditions for the fabrication involves the following processes:
of new materials. The problem of the search for new
materials also has two aspects: (1a) predicting composition • Representation of initial information about known
of the new materials and their properties based on knowl- physical–chemical systems having predefined proper-
edge of properties (chemical elements or simple com- ties with the use of pyramidal networks;
pounds), and (1b) the choice of substances that best • discovery of regularities which define classes of materi-
correspond to certain requirements. All our attempts to als with known physical–chemical systems;
extract rules connecting the formation of a certain com- • representation of these regularities as a set of logical
pound to properties of its constituent elements from expressions;
chemists or material scientists were unsuccessful. • prediction of new materials having predefined prop-

Chemists could not even indicate the list of those erties based on knowledge of constituent element
parameters of chemical elements which determined, e.g., properties.
the possibility of forming binary compounds of given
composition. In the best case they indicate the list of the The herein referred to physical–chemical system is a
traditional parameters of elements that is limited by atomic material system, e.g., compound, solid solution, or
(ionic) radii, electronegativities, electronic concentration heterogeneous mixture, which is formed from chemical
(ratio of number of valence electrons to number of atoms elements. A class of physical–chemical systems is a set of
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materials having a common target property such as com- of physical–chemical systems in essence is a logical model
pound formation, a particular composition, or compounds of the class. Formation of logical models for classes of
with a definite crystal structure type. physical–chemical systems via search-driven analysis of

A method for discovering such target properties is learning sets is often referred to as ‘knowledge discovery’,
pyramidal networks (special acyclic oriented graphs) which ‘knowledge mining’ and ‘concept learning’. The last term
allow the search for new materials to be accomplished. The defines the process most adequately. In this case the
method of regularities discovery and prediction on the concept is a generalized model of some class of physical–
basis of pyramidal networks is exemplified in a software chemical systems.
application called CONFOR (CONcept FORmation). Pre- After building a logical model for some class of
diction is performed by determining class membership physical–chemical systems, prediction of physical–chemi-
which first requires identifying materials knowledge that cal system members of this class is reduced to comparison
characterizes the class of physical–chemical systems. It is of their attribute descriptions with the logical expression
often necessary to characterize a class through an analysis defining the class. The comparison is performed by
of known physical–chemical systems which possess a calculation of the logical expression value after substitu-
desired property (denoted as the ‘in-class’) together with tion of ‘1’ for variables that are available in the description
systems which do not (denoted as the ‘out-of-class’) [12– of material and ‘0’ for other variables. If the value of the
15]. Once CONFOR is able to distinguish between these logical expression equals ‘1’ the tested physical–chemical
classes, materials with similar physical–chemical systems, system is determined to form or possess a certain property
for which no values of these properties are known, are then of interest.
evaluated. This process in essence is a learning or ‘train-
ing-and-testing’ process. The set of physical–chemical
systems used to characterize the class of interest is referred 5. Use of CONFOR for new compound prediction
to as a learning set.

The knowledge used for prediction is the conjunction of The physical–chemical basis of our approach is the
attribute values that characterize the desired materials to Mendeleev law. According to this law the periodic change
include the desired property attribute values, as well as in the properties of chemical systems depends on the
other attributes, and particular values for those attributes properties and nature of the elements which form these
that do not exist together with the desired property values. systems (compounds, solutions and so on). Mendeleev’s
This knowledge can be described by a logical expression law is an expression of the condition of compactness for
in which essential combinations of attribute values are compound classes in the multi-dimensional property space
represented by a conjunction of variables which designate of the chemical elements.
the in-class. The logical expression describing an in-class The use of CONFOR for predicting new inorganic

Table 1
Characteristics of the prediction results for the inorganic phases

Compounds /Systems Characteristics to be Experimental Error of
predicted tests for prediction, %

March 1997

ABX (X5Se,Te) Compound formation 92 42
ABX (X5O,S,Se,Te) Compound formation 316 102

ABX (X5O,F,S,Cl,Se,Br,Te,I) Compound formation 368 133

ABX (X5O,F,Cl,Br,I) Compound formation 389 54

A BX (X5S,Se) Compound formation 22 92 2

AB X (X5O,F,S,Cl,Se,Br,Te,I) Compound formation 727 162 4

A B X (X5O,S,Se) Compound formation 97 262 2 7

A(Hal) –B(Hal) Systems w/ compounds 101 82

AB X (X5O,S,Se,Te) Structure type 359 62 4

ABX (X5Al,Si,P,Ga, Structure type 42 52
Ge,As,Pd,In,Bi)
ABO Perovskite structure 180 113

A B O Pyrochlore structure 71 182 2 7

AB X ThCr Si structure 151 72 2 2 2

(X5Al,Si,P,Ge,As,Sb)
ABX (X5Al,Co,Ni, MnCu Al structure 52 132 2

Cu,Ga,Pd,In)
A (SO )*B (SO ) Compound formation 1:1 127 4x 4 z 4 w

*A(NO ) B(NO ) Compound formation 1:13 x 3 y

ABDO Compound formation 22 34

Average515%
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Table 2
Part of predictions of the crystal structure type ThCr Si for compounds with composition AB Si2 2 2 2

Designations:
1 formation of compound with the crystal structure type ThCr Si is predicted;2 2

- formation of compound with the crystal structure type ThCr Si is not predicted;2 2

% compound with crystal structure ThCr Si was synthesized and appropriate information was used in the computer learning process;2 2

↔ compound with the crystal structure ThCr Si does not exist under normal conditions and this information was used in the computer learning process;2 2

predicted formation of compound with the crystal structure type ThCr Si which was confirmed by experiment;2 2

predicted formation of compound with the crystal structure type ThCr Si which was not confirmed by experiment;2 2

Ø predicted absence of compound with the crystal structure ThCr Si which was not confirmed by experiment; empty square – indeterminate result.2 2
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compound crystal structures shows [16–20] that the aver- ‘new compound’. The system includes a database, a
age reliability of the prediction, based only on constituent knowledge base, and the predicting system based on the
property knowledge of chemical elements or simple com- program CONFOR [12–15]. Our approach has made it
pounds, exceeds 80% (Table 1). The shaded cells of Table possible to solve problems of the following types [16–20]:
2 show the results of comparing the predicted new phases
of composition AB Si possessing crystal structure type • prediction of compound formation or non-formation for2 2

ThCr Si with subsequent experimental data. These com- ternary systems;2 2

pounds are of some interest in the search for new magnetic • prediction of the possibility of forming ternary and
materials. more complicated compounds of desired composition;

Of the 77 predictions, 73 compounds agreed with • prediction of phases with defined crystal structures;
experimental data. Listed in Table 3 are the results of • estimation of phase quantitative properties (critical
predicting the formation and crystal structure type, at room temperature of transition to superconducting state,
temperature and atmospheric pressure, of compounds with homogeneity region, etc.).
the composition ABF [19]. Because of this good agree-5

ment, these compounds are useful in the search for new
electro-optical materials. 6. Conclusions

What properties of the constituent components do we
use for the description of physical–chemical systems? We have applied a search-based method, AI, for discov-
First, all fundamental properties of chemical elements: the ering regularities in the design of new inorganic materials.
distribution of electrons in the energy levels of isolated The effectiveness of the proposed approach is illustrated in
atoms, ionization potentials, ionic, covalent or atomic radii Table 1, 2 and 3. Aside from the prediction accuracies
of elements (cations), melting points, standard entropy of across various crystal structure types in Table 1, new
individual substances and the like. Second, all properties of magnetic and electro-optical materials with specific crystal
simple compounds – oxides, chalcogenides, halides, etc. – structures have been predicted.
as required by the composition of the compounds pre- To further improve the processing time and accuracy of
dicted. CONFOR for predicting new inorganic materials, there are

Now we develop the information-predicting system aspects of the method which will require further develop-
[16,17] to be used for automating the prediction of the ment. One very significant aspect is that of discretization

Table 3
II IIIPart of predictions of the crystal structure type for compounds with composition A B F5

A/B Be Ca V Fe Ni Cu Zn Sr Cd Sn Ba Sm Eu Yb Hg Pb

B ? * B
Al F G C G (B) ? ? (G) B (B) G (B)
Sc (*) G * (*) * * (*)
Ti ?  ? C C - ? (S) (B) C B
V B  B B (S) (B) B ?
Cr C  ? C ? (B) (F) F (G) ?
Mn F F F (G) B G
Fe F (F) F F F (S) F (B) * * B
Ga C  C C ? C (B) (F) (G) C (B)
As S * * * *
Lu (*) (*) B B B *
Tl * S * * (B) *
Ac C S ? * * * B B

Designations:
B – formation of compound with the crystal structure type BaFeF is predicted;5

C – formation of compound with the crystal structure type CaCrF is predicted;5

G – formation of compound with the crystal structure type BaGaF is predicted;5

F – formation of compound with the crystal structure type CaFeF is predicted;5

S – formation of compound with the crystal structure type SrFeF is predicted;5

- the crystal structure differing from those listed above is predicted;
* prediction of no compound with composition ABF ;5

(B), , (G), (F), (S) – compound with corresponding type of crystal structure was synthesized and appropriate information was used in the computer
learning process;
↔ compound with the crystal structure differing from those listed above does not exist under normal conditions and this information was used in the
computer learning process;
(*) compound ABF is not formed and this fact was used in the computer learning process;5

? or empty square – indeterminate result.
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