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Abstract

At present, hundreds of databases (DBs) on substance and material properties are being developed. The prime aim of their
operation is information service. Fifteen years ago, we proposed to use an extensive information of DBs not only for

information service, but also for searching regularities in data and the application of these regularities for the prediction of new
substances. The semantic networks of special kind were used for the search for regularities. Using deduced regularities we have
predicted thousands of new compounds in ternary, quaternary and more complicated systems, and estimated some of their
properties (crystal structure type, melting point, homogeneity region etc.). The comparison of our predictions with experimental

data, obtained later, showed that the average reliability of predicted inorganic compounds exceeds 80%. 7 2000 Published by
Elsevier Science Ltd.
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1. Introduction

The idea of development of arti®cial intelligence
(AI) in the model of `Homo sapiens' occurred with the
advent of ``clever machines'' Ð the computers. At pre-
sent, ideas of AI are transformed to the development
of robots performing some of the human duties to be
performed under unfavourable conditions, programs
which would extend the capabilities of dialoguing with
the computers, expert systems allowing the solution of
tasks which defy mathematical formulation, etc. The
most interesting AI applications are the data proces-
sing program systems for large symbolic information
bulks. The target of this processing is to search for
regularities in data. At the beginning, these programs
were made for robot learning in purposeful behaviour
in actual practice and as a tool for the analysis of
audio- and video-information to be input into compu-
ter. But soon it became evident that the area of these
programs application can be much more encompassing
and that these are tools extending the human capabili-

ties in cognition of the universe. The AI methods
named as computer learning came into use widely for
analyses of geological and geophysical information
with the aim of prediction of deposits or earthquakes,
for technical diagnosis of machinery faultinesses, for
medical diagnostics, for analysis of spectral data for
the purpose of detection of various chemical and
physical e�ects, etc. This paper presents the results of
computer learning applications in data processing of a
great body of information about inorganic substances
with the goal of prediction of new materials with the
prede®ned properties.

2. Semantic networks for the representation knowledge
about inorganic substances

Data processing is an analysis of properties and re-
lations of objects with an aim to detect various con-
nections in between. Therefore, the most optimal form
of such a data representation in the computer memory
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is associative structures which allow to trace the con-
nections without a great body of sorting information.
The mathematical model of associative structures is a
special kind of graph Ð the semantic networks (SNs),
Fig. 1, describing the connections between objects,
properties of objects and their status (Gladun, 1994).
The SNs in inorganic chemistry can represent the con-
nections between properties of components of known
chemical systems and properties of these systems. It is
important that the chemical systems can be divided
into distinguishable classes with their physical and
chemical properties. These classes were determined by
some concepts, for example, ``systems with formation
of compounds of de®nite composition'', ``compounds
with de®nite crystal structure type'', ``superconductors
with the nitrogen critical temperature of transition to
the superconducting state'', and so on. The search for
sets of component properties' intervals, which cause
the system membership to be in a certain class, is one
of the chemical data processing task using the SNs.
The result is a general classifying regularity (a compu-
ter form of some known concept description). The pro-
cess of concept formation is referred to as computer
learning. The periodicity of chemical elements' proper-
ties and, following on from this fact, the periodicity of
compounds' properties, allow the use of the formed
computer concepts for recognition of membership of
unknown chemical element set to one or other class,
which are described by formed concepts. This process
is called the results prediction.

3. Databases as a foundation of semantic networks
building

The application of SNs, and other empirical and
semi-empirical methods for ®nding regularities is
rather put into use in case of complete and qualitative

data. Our experience of SN applications, shows that
the number of erroneous predictions varies proportion-
ally with number of errors in experimental data to be
processed and the reliability grows with an increase of
initial data volume (reliability mounts to a limit with
an increase of size and representativeness of learning
set). Consequently, the application of the methods on
SNs, for searching regularities implies the use of data-
bases (DBs), containing extensive bulks of qualitative
information, as a basis. With this aim in mind we
develop the DBs containing data with the quali®ed
expert assessment. The most interesting of them are:
the DBs on materials for electronics with completely
assessed information (Yudina et al., 1995; Zemskov et
al., 1994) and inorganic ternary compound properties
DB containing partially assessed information (Kise-
lyova et al., 1996; Savitskii et al., 1984) (Fig. 2).

1. a phase diagram DB of material systems with inter-
mediate semiconducting phases (Zemskov et al.,
1995) contains information on physical±chemical

Fig. 2. Databases for the search for new inorganic compounds.

Fig. 3. Structure of DB on binary semiconducting systems.Fig. 1. Example of SN.
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properties of the intermediate phases and the most
important Pressure±Temperature±Concentration
phase diagrams of semiconducting systems, evalu-
ated by quali®ed experts (Figs. 3 and 4). Currently,
the DB contains information regarding several tens
of semiconducting systems.

2. DB of acousto-, electro-, and nonlinear-optical prop-
erties (Yudina et al., 1996) contains information
regarding crystals evaluated by experts (Fig. 5). In
addition, DB includes extensive graphical infor-
mation about the properties of the materials.

3. A DB of inorganic ternary compound properties was
built by us in the 1970s (Kiselyova et al., 1996;
Savitskii et al., 1984). It contains information about
thermochemical, crystal chemical and superconduct-

ing properties of more than 37,000 ternary com-
pounds taken from more than 11,000 publications
(Fig. 6). Some of the data have been assessed by
materials experts.

Our investigations, aimed at predicting new ma-
terials for electronics and other applications, are based

Fig. 4. Structure of DB on ternary semiconducting systems.

Fig. 5. Structure of database on crystals with acousto-, electro- and

nonlinear-optical properties ``Crystal''.

Fig. 6. Structure of database of ternary inorganic compounds

``Phases''.

Fig. 7. Schematic diagram of an information-predicting system.
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on these DBs. The development of a DB is connected
with building of some prede®ned SN that represents
the objective interrelations between the properties of
substances. DB information, however, does not pro-
vide direct answers to the connection between the sub-
stance properties and constituent component
properties. The AI application makes it possible to
search for such connections.

4. Application of arti®cial intelligence and databases to
the new inorganic materials computer design

It is impossible to use the DBs completely without

special software for searching for regularities in the
data. During the last quarter of the century, we and
our colleagues at the Glushkov Institute of Cyber-
netics, National Academy of Sciences of Ukraine, have
been working to solve the problems of AI application
in the prediction of new inorganic materials with pre-
de®ned properties (Kiselyova, 1993, 1997, 1998; Kise-
lyova et al., 1977; Savitskii et al., 1990). These
investigations aim to develop an information-predict-
ing system (Fig. 7) for inorganic materials computer
design. This system is based on SNs and DBs (Kise-
lyova, 1993, 1997; Savitskii et al., 1990).

We use SN with such a system of computer learning
that represents information about known chemical sys-

Fig. 8. GPN building process (Gladun, 1994). Fig. 9. Concept formation process (Gladun, 1994).

Table 1

Comparison of predictions with new experimental data

Compounds/systems Characteristics to be predicted Experimental tests for January 2000 Error of prediction (%)

ABX (X = Se, Te) Compound formation 100 44

ABX2(X = O, S, Se, Te) Compound formation 337 10

ABX3(X = O, F, S, Cl, Se, Br, Te, I) Compound formation 420 11

ABX4(X = O, F, Cl, Br, I) Compound formation 393 5

A2BX2(X = S, Se) Compound formation 24 9

AB2X4(X = O, F, S, Cl, Se, Br, Te, I) Compound formation 761 16

A2B2X7(X = O, S, Se) Compound formation 97 26

A(Hal)2 - B(Hal) Systems w/ compounds 108 10

AB2X4 (X = O, S, Se, Te) Structure type 381 7

ABX(X = Al, Si, P, Ga, Ge, As, Pd, In, Sb, Bi) Structure type 78 35

ABO3 Perovskite structure 186 13

A2B2O7 Pyrochlore structure 74 15

AB2X2(X = Al, Si, P, Ge, As, Sb) Structure type 200 8

ABX2(X = Co, Ni, Cu, Pd) MnCu2Al structure 28 14

AB2X(X = Al, Ga, In) MnCu2Al structure 24 13

Ax(SO4)y�Bz(SO4)w and A(NO3)x�B(NO3)y Compound formation 1:1 130 4

ABDO4 Compound formation 28 4

Average = 14%
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tems like Ð growing pyramidal networks (GPNs). A
pyramidal network is an acyclic oriented graph having
no vertices but one entering arc. If the processes of
concept formation are determined in the network then
the pyramidal network is designated as a growing one
(Gladun, 1994). GPN is built during the process of
objects input (Fig. 8). Each object (chemical system) is
put in as a set of values of the component properties
with an indication of the class to which the system
belongs. The nearby values of components' properties
are united into one interval using a special program or
the experience of a researcher. Concept formation pro-
cess (Fig. 9) consists of the analysis of vertices in built
network and the choice of those ones that are the
most typical for each class (Gladun, 1994). These ver-
tices became the checking vertices. The resultant con-
cepts (classifying regularities) can be stored in

Fig. 10. Part of a table illustrating the prediction of compounds with the composition ABO3. (Designations: + formation of compound with

composition ABO3 is predicted; ÿ formation of compound with composition ABO3 is not predicted;$ compound with composition ABO3 was

synthesized and appropriate information was used in the computer learning process;t compound with composition ABO3, does not exist under

normal conditions and this information was used in the computer learning process; 7 predicted formation of compound with composition

ABO3, which was con®rmed by experiment; 
 predicted formation of compound with composition ABO3, which was not con®rmed by exper-

iment; empty square Ð indeterminate result).

Fig. 11. Examples of classes of compounds, which prediction is rea-

lized.
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computer memory and printed or read out in the form
of a learned SN or an equivalent Boolean expression.
These values of the component properties form the
variables. During the prediction process the computer
receives only the atomic numbers of the elements or
designations of simple compounds, while the values of
the properties of the appropriate elements or simple
compounds are automatically extracted from the DB.
They are substituted into the GPN and the researchers
can easily obtain the necessary prediction.

What properties of the constituent components do
we use for the description of physical±chemical sys-
tems? First, all fundamental properties of chemical el-
ements: the distribution of electrons in the energy
levels of isolated atoms, ionization potentials, ionic,
covalent or atomic radii of elements (cations), melting
points (at 1 atm), standard entropy of individual sub-
stances and the like. Second, all properties of simple
compounds Ð oxides, chalcogenides, halides, etc. Ð
as required by the composition of the compounds are
predicted (Kiselyova, 1993, 1997, 1998; Kiselyova et
al., 1977; Savitskii et al., 1990).

Our approach has made it possible to solve pro-
blems of the following types (Kiselyova, 1993, 1997,
1998; Kiselyova et al., 1977; Savitskii et al., 1990)
(Table 1):

. prediction of compound formation or non-for-

mation for ternary systems;
. prediction of the possibility of forming ternary and

more complicated compounds of desired compo-
sition;

. prediction of phases with de®ned crystal structures;

. estimation of phase quantitative properties (critical
temperature of transition to superconducting state,
homogeneity systems).

Predicted compounds were then searched for new
magnets, semiconductors, superconductors, electro-
optical, acousto-optical, nonlinear-optical and other
materials required for new technologies (Kiselyova,
1993, 1997, 1998; Kiselyova et al., 1977; Savitskii et
al., 1990). The comparison of these predictions with
the experimental data, obtained later, showed that
average reliability of predicted compounds exceeds
80% (Table 1).

In Fig. 10 the comparison between the results after
predicting the compounds with composition ABO3

(Kiselyova et al., 1977) and the new experimental data
is illustrated. It was the ®rst prediction which we car-
ried out 25 years ago. Only one prediction was
detected to be erroneous (CuCeO3). These compounds
were predicted in the process of the search for new fer-
roelectrics. More recently, we predicted formation of
other compounds of this kind and other substances for
electronics (Fig. 11).

Fig. 12. Part of table illustrating the prediction of Heusler phases with the composition AB2Cu. (Designations: + formation of compound with

the crystal structure type resembling the Heusler alloys is predicted; ÿ formation of compound with the crystal structure type resembling the

Heusler alloys is not predicted;$compound with the crystal structure type resembling the Heusler alloys was synthesized and appropriate infor-

mation was used in the computer learning process; 7 predicted formation of compound with the crystal structure type resembling the Heusler

alloys, which is con®rmed by experiment; 
 predicted formation of compound with the crystal structure type resembling the Heusler alloys,

which is not con®rmed by experiment; w predicted absence of compound with the crystal structure type resembling the Heusler alloys, which is

con®rmed by experiment;t compound with the crystal structure type resembling the Heusler alloys does not exist under normal conditions and

this fact was used in the computer learning process; empty square Ð indeterminate result).
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Shown in Fig. 12 is a part of the table illustrating

predictions of the Heusler phases with composition

AB2Cu. All the ®ve checked predictions agreed with

the experimental data.

In the process of studies aimed at searching for new

magnetic materials we predicted compounds with com-

position AB2O4 (Fig. 13). Of 80 checked predictions,

78 agreed with the new experimental data.

Fig. 13. Part of table illustrating the prediction of compounds with the composition AB2O4. (Designations: + formation of compound with com-

position AB2O4 is predicted; ÿ formation of compound with composition AB2O4 is not predicted;$ compound with composition AB2O4 was

synthesized and appropriate information was used in the computer learning process;t compound with composition AB2O4 does not exist under

normal conditions and this information was used in the computer learning process; 7 predicted formation of compound with composition

AB2O4, which was con®rmed by experiment; w predicted absence of compound with composition AB2O4, which is con®rmed by experiment; 

predicted formation of compound with composition AB2O4, which was not con®rmed by experiment; é predicted absence of compound with

composition AB2O4, which was not con®rmed by experiment; empty square Ð indeterminate result).
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Fig. 14 shows results after comparing the predicted

double sulphates of monovalent and trivalent elements.

All the 14 checked predictions coincided with the new

experimental data.

Fig. 15 shows the predictions of new elpasoliths

with composition A2BCF6. These results were obtained

in the process of searching for new substances for laser

matrices.

5. Conclusions

We carried out good predictions of qualitative prop-
erties of physical±chemical systems: formation of com-
pounds, their crystal structure type, etc. The problem
becomes even more complicated if it is necessary to
predict some quantitative property (e.g., the melting
point, homogeneity range, etc.). The hypothesis of
class compactness, based on methods of computer
learning presupposes that the di�erent classes locate
compactly in the multidimensional feature space and
there are no intersections between these classes. How-
ever, we found such a set of properties whose space
contradict this hypothesis. The application of cluster
analysis to the example learning set in combination
with the grouping of features according to statistical
correlation allows us to decrease the intersections of
classes, but only slightly, owing to the selection of the
natural (for certain learning set) threshold values of
predicted quantitative property. Note that these natu-
ral threshold value are less a consequence of the nature
of phases and more the set of examples for the compu-
ter learning method. These observations are based
upon the learning set examples which have been
obtained and investigated at present.

Therefore, as a consequence of the above interaction
problem, the attempt to predict certain threshold
values which are important for technological appli-
cations, e.g., boiling point temperatures of helium and
nitrogen for superconducting compounds, is justi®ed
only from a practical standpoint. The error of this pre-
diction will be high, but it will be possible to predict
(with high reliability) those objects which are widely
spaced in features' space. A priori identi®cation of
these objects by a researcher seems to be a great pro-
blem. One possible way to solve this problem is to
visualize a two-dimensional projection of points, which
corresponds to the objects of the learning set, in com-
bination with cluster analysis of objects and grouping
features according to statistical correlation.

As stated above, prediction accuracy of qualitative
properties depends strongly on the volume and repre-
sentativeness of the learning set. Our experience shows
that the number of the learning examples must equal
100s or even 1000s in order to have acceptable esti-
mation of quantitative property. However, the solution
of tasks of quantitave property prediction is one of the
most important problems of our approach.

The future of the approach using DBs and AI
methods, is also connected with the development of in-
formation-predicting system. That is a very expensive
and long procedure. However, such a system allows to
cut down the time and expenses involved in the search
and development of new materials with prede®ned
properties. It should be noted that this kind of simu-
lation requires only ``good'' information of DBs.

Fig. 14. Part of table illustrating the prediction of compounds with

the composition A2SO4�B2(SO4)3. (Designations: + formation of

compound with composition A2SO4�B2(SO4)3 is predicted; ÿ for-

mation of compound with composition A2SO4�B2(SO4)3 is not pre-

dicted; $ compound with composition A2SO4�B2(SO4)3 was

synthesized and appropriate information was used in the computer

learning process; t compound with composition A2SO4�B2(SO4)3
does not exist under normal conditions and this information was

used in the computer learning process; 7 predicted formation of

compound with composition A2SO4�B2(SO4)3 which was con®rmed

by experiment; empty square Ð indeterminate result).
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Fig. 15. Prediction of new elpasoliths with composition A2BCF6. (Designations: E formation of compound with elpasolith crystal structure type

is predicted; ÿ formation of compound with elpasolith crystal structure type is not predicted; � formation of compound with composition

A2BCF6 is not predicted; X compound with elpasolith crystal structure type was synthesized and appropriate information was used in the compu-

ter learning process; Y compound with elpasolith crystal structure type does not exit under normal conditions and this information was used in

the computer learning process;
 compound with composition A2BCF6 does not exist under normal conditions and this information was used in

the computer learning process; empty square Ð indeterminate result).
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