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Inorganic Compounds

ABSTRACT

The review of applications of machine training methods to inorganic chemistry and materials science is 
presented. The possibility of searching for classification regularities in large arrays of chemical informa-
tion with the use of precedent-based recognition methods is discussed. The system for computer-assisted 
design of inorganic compounds, with an integrated complex of databases for the properties of inorganic 
substances and materials, a subsystem for the analysis of data, based on computer training (including 
symbolic pattern recognition methods), a knowledge base, a predictions base, and a managing subsys-
tem, has been developed. In many instances, the employment of the developed system makes it possible 
to predict new inorganic compounds and estimate various properties of those without experimental 
synthesis. The results of application of this information-analytical system to the computer-assisted de-
sign of inorganic compounds promising for the search for new materials for electronics are presented.



198

Application of Machine Training Methods to Design of New Inorganic Compounds

INTRODUCTION

The problem of predicting new multi-component 
compounds’ formation and calculating their 
intrinsic properties proceeding from the knowl-
edge of their constituent components’ properties 
is one of the most important tasks of inorganic 
chemistry. Any successful attempt of designing 
not yet synthesized compounds is of the large 
theoretical and practical importance. Calcula-
tions or predictions, based on only the properties 
of constituent components, are called a priori 
calculations or predictions. The difficulties of a 
priori predictions are connected with the solution 
of mathematical problems arising in the quan-
tum mechanical calculations of multi-electronic 
systems (Gribov, 2010; Kohanoff, 2006). As a 
result, chemists and materials scientists make use 
of many empirical prediction methods. It should 
be noted that inorganic chemistry similar to other 
empirical sciences, for which, at the modern level 
of computational mathematics’ development, even 
complex algebraic approaches do not guarantee 
satisfactory computational results for their ob-
jects and phenomena, has various classification 
schemes since obtaining any scientific knowledge 
requires two initial stages: data acquisition and 
data classification. In most empirical sciences, 
classification schemes play the role of exact 
mathematical regularities. The development of 
classification rules is a complicated and labori-
ous process that requires high qualifications of 
specialists. The application of pattern recognition 
methods and appropriate software systems allows 
one to facilitate and speed up the development 
of classification rules. The tasks of a specialist 
in a specific subject field when implementing 
this process are the following: the statement of 
a problem, choice of objects and phenomena 
for computer-aided analysis, choice of attribute 
description, interpretation of results, and applica-
tion of the classification principles to prediction.

The present chapter is devoted to the use of 
precedent-based computer training methods for 

searching for classification rules for inorganic 
substances and the application of these rules to 
predicting new compounds and evaluating their 
properties.

STATEMENT OF THE 
PROBLEM OF DESIGNING NEW 
INORGANIC COMPOUNDS

The problem of designing new inorganic com-
pounds can be formulated as the search for 
combination of chemical elements and their ratio 
(i.e., determining qualitative and quantitative 
compositions) for the synthesis (under given 
conditions) of the predefined space molecular or 
crystal structure of a compound that possesses the 
required functional properties. It is the knowledge 
of the properties of chemical elements and data 
about other compounds already investigated that 
constitute initial information for the calcula-
tions. The problem of designing new inorganic 
compounds can be reduced to discovering the 
relationships between the properties of chemical 
systems (for example, properties of inorganic 
compounds) and the properties of elements that 
form these systems (Burkhanov & Kiselyova, 
2009; Kiselyova, 2005).

The methods of pattern recognition are one of 
the most effective means of search for regularities 
in the large arrays of chemical data. In this case, 
the problem can be defined as follows (Zhurav-
lev, Kiselyova, Ryazanov, Senko, & Dokukin, 
2011). Suppose that every inorganic substance 
is described by a vector x = (x1

(1), x2
(1),..xM

(1), 
x1

(2), x2
(2),.., xM

(2),…, x1
(L), x2

(L),.., xM
(L)), where L 

is the number of chemical elements that form a 
compound and M is the number of parameters of 
chemical elements. Each substance is also char-
acterized by a class membership parameter: a(x) 
∈ {1, 2,…, K}, where K is the number of classes. 
The training sample consists of N objects: S = {xi, 
i = 1, …, N}. We denote a subset of objects of 
the training sample from class aj, j = 1, 2, …, K, 
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by Saj = {x: a(x) = aj}. The aim of training is to 
construct a classification rule that distinguishes 
not only between objects of different classes in 
the training sample but also preserve prognostic 
ability to generate new combinations of chemical 
elements that were not used for training. Thus, we 
deal with the classical statement of a precedent-
based pattern recognition problem. The peculiar-
ity of the subject field manifests itself only via 
the formation of attribute description possessing 
a composite structure: the set of parameters of 
chemical elements (the components of an inor-
ganic substance) is repeated as many times as 
there are elements included into the compound.

METHODS AND TOOLS

The main difficulties of pattern recognition ap-
plication to solving tasks of inorganic chemistry 
are the following: small informative gain of at-
tributes - properties of chemical elements, the 
strong correlation of these attributes owing to 
their dependence on common parameter - atomic 
number of chemical elements (it follows from 
the Periodic Law), blanks of attributes’ values; 
in many cases, we have the large asymmetry of 
training set size for different classes; sometimes 
attribute description includes non-numerical at-
tributes (symbolic), and there are experimental 
mistakes of classification in training sets.

In connection with the above-stated peculiari-
ties of subject domain, the search for methods 
and algorithms of pattern recognition allowing 
the correct solution of these problems was one 
of the basic tasks at computer-assisted design of 
inorganic compounds. It was established during 
testing various algorithms of machine training 
that it is impossible to specify beforehand, what 
algorithm is most effective in solving a certain 
chemical task of inorganic compounds design. 
Quite often programs, which have classified 
training set well, give bad results at the prediction 
of unknown compounds. In this connection, the 

most effective way of solving tasks of predicting 
new inorganic compounds and their properties 
is concerned with the methods of recognition by 
ensembles of algorithms (Zhuravlev, Ryazanov, 
& Sen’ko, 2006). At synthesis of a collective 
decision it is possible to compensate mistakes of 
separate algorithms by the correct predictions of 
other algorithms.

Another way of increasing the accuracy of pre-
dicting is the use of chemical element properties’ 
dependence on atomic number. On the one hand, 
attribute descriptions are formed from parameters 
of elements with strong mutual correlation. This 
fact complicates searching for properties that are 
the most important for classification. On the other 
hand, the classifying regularities including values 
of any subset of properties of chemical elements 
used for the description of inorganic compounds 
should, in principle, give identical results of clas-
sification. I.e., the results of the prediction with 
use of various subsets of properties of elements 
should, basically, coincide. This fact allows an ad-
ditional possibility of collective decision making 
but already on the basis of some sets of attribute 
descriptions obtained as a result of division of an 
initial set of properties of chemical elements on 
partially crossed subsets.

The problem of filling blanks of attribute values 
also is partially solved with the use of periodic 
dependences of elements’ parameters (Kiselyova, 
Stolyarenko, Ryazanov, & Podbel’skii, 2008; 
Kiselyova et al., 2011). A skipped parameter value 
of some element is replaced by the average value 
of this parameter for two chemical elements that 
are nearest (within the range of group of Periodic 
System) to the element in question. In this case, 
the average value of involved property over the 
nearest elements is computed. Here the relative 
Euclidean distance between elements need to be 
not greater than 10%, and these elements are sought 
only among the elements in the same group of 
the Periodic System. If no appropriate element is 
found, then either the blank is replaced by the mean 
value of the element’s property for the substances 
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with the same classifying attributes (in case of 
the training sample), or this attribute is excluded 
from the sample (in case of the control sample 
for recognition), and the system is retrained again 
without this property, i.e., the resulting sample 
after eliminating this parameter is passed to the 
input of a pattern recognition procedure.

After testing some pattern recognition program 
systems, we have chosen a wide class of algo-
rithms of the system RECOGNITION developed 
at A. A. Dorodnicyn Computing Centre, Russian 
Academy of Sciences (Zhuravlev et al., 2006). 
This multifunctional system for pattern recogni-
tion includes:

1.  Standard statistical methods:
a.  The k–nearest neighbors,
b.  Fisher’s linear discriminator.

2.  Linear machine method implementing linear 
solving rule that is calculated by searching for 
maximal subsets of simultaneous inequali-
ties corresponding to recognized objects. 
This maximal subset is searched with the 
help of relaxation method.

3.  Neural networks. Besides standard variant 
of multilayer perceptron, its modification 
with three layers is used. With that the out-
put of the second layer includes a variety of 
products of the first layer outputs.

4.  Support vector machine.
5.  Estimate calculating algorithms (EC) model, 

where the estimates for classes are calculated 
as weighted sum of similarity functions by 
a variety of features subsets and standard 
objects.

6.  LoReg (Logical Regularities) voting algo-
rithm where the estimations for classes are 
calculated with the help of voting by a logical 
regularities’ system. Logical regularity is 
defined as a non-extendible multidimen-
sional interval in features space that includes 
objects from one of recognized classes (or 
mainly from one class).

7.  Deadlock test algorithm, where the estimates 
for classes are calculated as sums of similar-
ity functions by a variety of deadlock tests 
and standard objects. Deadlock test is defined 
as irreducible combination of features that 
allows separation of objects from different 
classes.

8.  Statistical weighted syndromes, where the 
estimates for classes are calculated by sys-
tems of so called «syndromes». Syndrome 
is defined as a sub-region in feature space 
where the fraction of one of recognized 
classes significantly differs from the fraction 
of the same classes in neighbor sub-regions. 
Syndromes are searched with the help of 
optimal partitioning technique.

9.  Decision trees.
10.  Collective methods where final solution 

is calculated by set of previously trained 
algorithms belonging to above mentioned 
families (algebraic, logical, and heuristic 
correctors).

11.  The set of unsupervised classification meth-
ods with constructing collective solutions.

Also the program of concept formation Con-
For developed at V. M. Glushkov Institute of 
Cybernetics, National Academy of Sciences of 
Ukraine (Gladun, 1997, 1995, 1972; Gladun & 
Vashchenko, 1975) was used with success. The 
system is based on a special data structure named 
the growing pyramidal networks.

The special information-analytical system 
(IAS) for design of inorganic compounds was 
developed (Burkhanov & Kiselyova, 2009; Kise-
lyova et al., 2011). Apart from subsystem of data 
analysis based on above mentioned algorithms of 
pattern recognition, IAS includes (Figure 1) an 
integrated subsystem of DBs for the properties of 
inorganic substances and materials, subsystem of 
selecting the most important attributes, visualiza-
tion subsystem, knowledge base, base of predic-
tions for various classes of inorganic substances, 
and managing subsystem.
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The subsystem of databases on the properties 
of inorganic substances and materials developed 
at the A. A. Baikov Institute for Metallurgy and 
Materials Science, Russian Academy of Sciences 
(IMET RAS), is the source of information for the 
computer-aided analysis. Its usage allows a forma-
tion of representative training sample. Now this 
subsystem incorporates the following DBs:

1.  The DB “Phases” for the properties of 
inorganic compounds (Kiselyova, 2005; 
Kiselyova, Dudarev, & Zemskov, 2010) now 
containing information on more than 49 000 
ternary compounds (i.e., compounds made 
up of three chemical elements) and more than 
23 000 quaternary compounds, extracted 
from more than 26 000 publications.

2.  The DB “Elements” for the properties of 
chemical elements (Kiselyova et al., 2010) 
containing data for more than 90 parameters.

3.  The DB “Diagrams” for phase diagrams of 
semiconductor systems (Kiselyova, 2005; 
Kiselyova et al., 2010, 2004) containing the 
information on phase diagrams of semicon-
ductor systems and the physical and chemical 
properties of phases forming in those, col-
lected and evaluated by experts. At present 
this DB comprises the detailed information 
on several tens of systems that are the most 
important in semiconductor electronics.

4.  The DB “Crystal” for the properties of 
acousto-optical, electro-optical, and non-
linear optical substances (Kiselyova, 2005; 
Kiselyova et al., 2010, 2004) now containing 
the information on the parameters of more 
than 140 materials.

5.  The DB “Bandgap” for the forbidden band 
width of inorganic substances (Kiselyova et 
al., 2010) currently containing the informa-
tion on more than 3000 substances.

Figure 1. Schema of information-analytical system for design of inorganic compounds
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The total size of DBs is about 8 Gbytes. The 
integrated subsystem of DBs allows specialists 
to gain aggregate information on the properties 
of substances and materials from different data-
bases at one time. Authorized users can access 
to the subsystem of DBs via the Internet (http://
imet-db.ru).

The subsystem of selecting the most important 
attributes (properties of chemical elements) is 
based on a procedure of minimization of gen-
eralized error functionals for convex correcting 
procedures with respect to ensembles of predictors 
constructed on the basis of individual attributes 
(Senko, 2009; Senko & Dokukin, 2010). The 
selection of the properties of chemical elements, 
providing the most information for the classifica-
tion of substances, is of double significance. On the 
one hand, it enables a drastic reduction of attribute 
description that includes hundreds of elements’ 
properties for multi-component substances. On 
the other hand, the selection of the most important 
properties of elements in classification of chemical 
substances affords physical interpretation of the 
resulting classifying regularities improving the 
confidence in the obtained predictions and makes 
it possible to find substantial causal relationships 
among the parameters of subjects and to develop 
physical and chemical models of the phenomena.

The visualization subsystem allows an illustra-
tion of attribute selection results. The informa-
tion about properties of chemical compounds 
is represented in habitual for the chemists and 
materials scientists form: as projections of the 
points corresponding to compounds of a certain 
type in properties space of chemical elements. The 
system of visualization is intended for the repre-
sentation of information about the coordinates of 
properties for elements included into compounds. 
Use of algebraic functions of chemical elements’ 
properties is possible, for what the special complex 
attributes formation subsystem was developed.

At the solution of recognition tasks and data 
analysis, the tools for visualizing multidimensional 
data are important. They allow a graphic repre-

sentation of a configuration of classes, clusters, 
and disposition of separate objects - chemical 
compounds. These tools are necessary, first of 
all, in case of tasks with the large number of at-
tributes, when the separate projections in 2D- or 
3D-subspaces of attributes contain poor informa-
tion concerning n-dimensional descriptions. In this 
connection, the subsystem of multidimensional 
scaling was developed too.

The knowledge base (tasks base) contains 
the discovered regularities, which can be used 
for prediction of substances not yet synthesized 
and estimation of their properties when there is 
no information on a certain chemical system in 
the databases. The regularities are stored in the 
tasks base in the intrinsic format of those software 
products for the data analysis by whose means 
they were obtained. Such implementation makes 
it possible to integrate new software products for 
the analysis of data into the IAS and resolves the 
problem associated with the fact that the forms of 
representation of the resulting regularities in the 
computer training methods used are substantially 
different. By a task, it is meant the procedure of 
training by the selected methods on a particular 
training sample. Here it is suggested that not the 
results of training, as such (like logical expres-
sions or the structure of a trained neural network), 
but so-called labels for the tasks be stored in 
the tasks base. The term label is taken to mean 
the necessary information for the task, which 
permits distinguishing this task from others. The 
following information on the task is stored in the 
IAS: the unique number of the task; the training 
sample in standard format; data for the attributes 
used to form the training sample; the identifier 
of the software product for the data analysis by 
whose means the regularities were obtained; the 
list of methods employed in training, with their 
parameters; information on the quantitative and 
qualitative composition of the compounds used 
in training; the identifier of the compounds’ pa-
rameter to be predicted; etc.
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The predictions base contains the results 
of previous computer experiments, as well as 
references to service information stored in the 
knowledge base. The use of the predictions base 
made it possible to improve the functionality of 
the IMET RAS DB for the properties of inorganic 
substances and materials through providing the 
user not only with the available information on 
substances that have already been studied, but also 
with predictions of inorganic compounds which 
have not yet been obtained and estimations of 
their properties.

The managing subsystem organizes the com-
puting process and carries out interaction among 
all functional subsystems of the IAS, as well as 
provides access to IAS via the Internet. Besides, 
the managing subsystem provides the user with 
software for preparation of data for the analysis, 
produces reports in the form habitual for chemists, 
and provides other service functions. In particular, 
a special subsystem has been designed to retrieve 
the DB information that, after its estimation by 
chemist, is used to train the computer, and to pre-
pare this information for the subsequent analysis. 
The subsystem allows the chemist to edit found 
information and to form an attribute description 
of compound, which is a complex description 
made up of parameters of few chemical elements 
included into its composition. The chemist selects 
the properties of chemical elements to form a 
training sample, and the subsystem for prepara-
tion of training set retrieves the chosen values of 
the elements’ properties from the DB “Elements”, 
makes up complex attributes as algebraic func-
tions of the initial parameters of elements when 
needed, and merges the attribute description to 
produce a table that is there upon passed to the 
input of the prediction subsystem. The subsystem 
for generation of results is intended for presenting 
predictions in the tabular form customary among 
chemists and material scientists.

Now the IAS is the main tool for predicting 
new inorganic compounds in our investigations.

APPLICATION OF PATTERN 
RECOGNITION METHODS 
TO INORGANIC CHEMISTRY 
AND MATERIALS SCIENCE

The first studies of the application of the pattern 
recognition methods for predicting inorganic 
compounds were carried out in IMET by Savitskii 
and his co-workers in the mid-1960s (Savitskii, 
Devingtal’, & Gribulya, 1968a, 1968b). The 
results of the prediction for rather simple binary 
metallic systems turned out to be excellent: their 
comparison with new obtained experimental 
data showed that the reliability of the prediction 
of the binary compounds exceeded 90% (Sav-
itskii & Gribulya, 1985; Savitskii et al., 1990). 
Software developed by Devingtal’ (Devingtal’, 
1971, 1968) was used in these pioneer studies 
on designing binary intermetallics. Devingtal’ 
applied the methods of linear programming to 
the solution of the extreme problems of pattern 
recognition. The successful investigations of 
Savitskii’s team initiated the application of pattern 
recognition methods to solution of various tasks 
in physical metallurgy. In (Vozdvizhenskii, 1974; 
Vozdvizhenskii & Falevich, 1973), an algorithm 
of potential functions (Iserman, Braverman, & 
Rosonoer, 1970) was used for the prediction of 
binary metallic systems. The estimate calcula-
tion algorithm (Zhuravlev & Nikiforov, 1971) 
was applied to the search for optimal quantities 
of additives of different chemical elements to 
the steel for attaining the extreme mechanical 
properties (Lenovich, 1974). A linear algorithm 
of computer training of pattern recognition was 
applied to the search for alloy dopants (Gulyaev & 
Pavlenko, 1973). Mechanical properties of steels 
were predicted (Li, 2006) with the application of 
the algorithm of binary decision trees (Breiman, 
Friedman, Olshen, & Stone, 1984) and artificial 
neural networks (ANN) (Bahrami, Mousavi, & 
Ekrami, 2005). ANN were used in predicting 
shear strength of Ni-Ti alloys (Taskin, Dikbas, 
& Caligulu, 2008) and in predicting the mass 
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loss quantities of some Al–Cu based composite 
materials reinforced with SiC (Hayajneh, Hassan, 
Alrashdan, & Mayyas, 2009).

However most of applications of pattern rec-
ognition methods were connected with solution of 
the problems of inorganic chemistry and materials 
science. A significant advance has been made in 
this area by teams working at A. A. Baikov Insti-
tute for Metallurgy and Materials Science of RAS 
(Kiselyova, 2005, 2003, 2002, 1993a, 1993b; Kise-
lyova, Gladun, & Vashchenko, 1998; Kiselyova, 
LeClair, Gladun, & Vashchenko, 2000; Kiselyova, 
Pokrovskii, Komissarova, & Vashchenko, 1977; 
Kiselyova, Ryazanov, & Sen’ko, 2009; Kiselyova 
& Savitskii, 1983; Kiselyova, Stolyarenko, Gu, & 
Lu, 2007a; Kiselyova et al., 2011, 2008, 2007b; 
Savitskii et al., 1990, 1968a, 1968b; Savitskii & 
Gribulya, 1985; Savitskii, Gribulya, & Kiselyova 
1982, 1981, 1980, 1979; Zhuravlev et al., 2011) 
and at University of Shanghai (Chen, Chen, Lu, Li, 
& Villars, 1999; Chen, Li, & Qin, 1998; Chen, Li, 
Yao, & Wang, 1996a, 1996b; Chen, Lu, Chen, Qin, 
& Villars, 1999; Chen, Lu, Qin, Chen, & Villars, 
1999; Chen, Lu, Yang, & Li, 2004; Chen, Zhu, 
& Wang, 2000; Gu, Lu, Bao, & Chen, 2006; Liu, 
Chen, & Chen, 1994; Lu et al., 1999; Yan, Zhan, 
Qin, & Chen, 1994). Chinese researchers used in 
their calculations: ANN (Chen et al., 1998, 1996b), 
genetic algorithms (GA) (Chen et al., 1998), sup-
port vector machine (SVM) methods (Chen et al., 
2004; Gu et al., 2006), partial least squares (PLS) 
regression method (Chen et al., 1996a), principal 
component backing (PCB) method (Liu et al., 
1994), etc. The investigators of IMET RAS used 
methods developed by Devingtal’ (Savitskii et 
al., 1990, 1982, 1981, 1980, 1979, 1968a, 1968b; 
Savitskii & Gribulya, 1985), various modifications 
of the program of concept formation (Savitskii 
et al., 1990, 1982, 1981, 1980, 1979; Kiselyova, 
2005, 2003, 2002, 1993a, 1993b; Kiselyova & 
Savitskii, 1983; Kiselyova et al., 2011, 2009, 2008, 

2007a, 2007b, 2000, 1998, 1977), and software 
product RECOGNITION (Kiselyova et al., 2011, 
2010b, 2009, 2008, 2007a, 2007b; Zhuravlev et 
al., 2011). It should be noted that the algorithms 
based on symbolic machine training methods (for 
example, ConFor (Gladun, 1997, 1995, 1972; 
Gladun & Vashchenko, 1975) or LoReg (Kovshov, 
Moiseev, & Ryazanov, 2008; Ryazanov, 2007) 
are the most adequate for solution of the tasks of 
inorganic compounds design because they pro-
vide a possibility of analyzing “mixed” chemical 
data (numerical, symbolic, etc.). As a rule, these 
algorithms give good results of predicting new 
inorganic compounds also. Note should be taken 
that traditional expert systems (Chen et al., 1998; 
Zhou, Jin, Shao, & Chen, 1989; Yao, Qin, Chen, 
& Villars, 200l) are poorly suitable in inorganic 
chemistry. The keystone at development of ex-
pert systems in this area is unsolved problem of 
knowledge acquisition from specialists.

The various methods of pattern recognition 
were used by other investigators for designing new 
inorganic substances with predefined properties. 
The discriminant analysis was widely used for 
the prediction of the possibility of formation of 
binary compounds with lanthanides (Kutolin & 
Kotyukov, 1978; Kutolin, Vashukov, & Kotyukov, 
1978), of the crystal structure type for refractory 
binary compounds (Kutolin & Kotyukov, 1979), 
of the type and concentration of defects and of 
defect formation energetics in imperfect crystals 
of refractory compounds (Kutolin, Komarova, 
& Frolov, 1982). The analysis of the electrical 
properties of PZT ceramics was carried out by a 
back propagation artificial neural network method 
(Cai, Xia, Li, & Gui, 2006). The ANN were used 
in predicting ultra-hard binary compounds (Tha-
ler, 1998), new orthorhombic ABO3 perovskites 
(Aleksovska, Dimitrovska, & Kuzmanovski, 
2007), the band gap energy and the lattice constant 
of chalcopyrites (Zeng, Chua, & Wu, 2002), the 
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hexagonal lattice parameters of apatites (Kockan & 
Evis, 2010). Principal component analysis (PCA) 
was used in the search for hydrogen storage for 
AB5-alloys (Ye, Xia, Wu, Du, & Zhang, 2002). 
New electro-ceramic materials were designed 
using ANN and GA (Scott, Manos, & Coveney, 
2008). The method of potential functions was used 
for predictions of new spinels (Talanov & Frolova, 
1979, 1982). The promising approach is connected 
with combination of machine training techniques 
and first principles computations (Ceder, Morgan, 
Fischer, Tibbetts, & Curtarolo (2006); Hautier, 
Fischer, Jain, Mueller, & Ceder, 2010).

These examples do not exhaust all the applica-
tions of pattern recognition methods to inorganic 
chemistry and materials science. More detailed 
reviews are given in the monograph (Kiselyova, 
2005) and the reviews (Burkhanov & Kiselyova, 
2009; Kiselyova, 2002).

RESULTS OF THE PREDICTION OF 
NEW INORGANIC COMPOUNDS

The potential of computer training methods for 
pattern recognition in designing new inorganic 
compounds can be demonstrated by comparison 
of the results of the predictions with newer ex-
perimental data.

The problem of designing new substances 
with desired properties can be divided into four 
consecutive problems:

• The prediction of compound formation or 
non- formation;

• The prediction of compounds of desired 
composition;

• The prediction of compounds with a spe-
cific crystal structure type;

• The estimation of quantitative properties 
of compounds (critical temperature of tran-
sition to superconducting state, homogene-
ity region, bandgap, etc.).

Prediction of Compounds Formation 
with Composition ABO3

The compounds with composition ABO3 are 
conventional piezoelectric, acousto-optic, electro-
optic and nonlinear optical materials. The predic-
tion of these compounds was the first experience 
of computer-assisted design of multi-component 
substances (Kiselyova et al., 1977). At the solution 
of prediction task of forming compounds with this 
composition, 239 examples of formation and 39 
examples of non-formation of compounds ABO3 
were used for computer training.

Based on physical and chemical understanding 
of the nature of substances of this kind, three sets 
of component properties were chosen for descrip-
tion of these substances:

1.  The distribution of electrons in the energy 
levels of isolated atoms of the chemical ele-
ments A and B and their formal valences in 
compounds with this composition.

2.  The types of incomplete electronic shells (s, 
p, d, or f), the first four ionization potentials, 
the ionic radii according to Bokii and Belov, 
the standard isobaric heat capacities and the 
formal valences of the elements A and B in 
these compounds.

3.  The ionic radii according to Bokii and 
Belov, the standard enthalpies of formation 
and isobaric heat capacities of appropriate 
simple oxides, and the formal valences of 
the elements A and B in these compounds.



206

Application of Machine Training Methods to Design of New Inorganic Compounds

The program based on concept formation 
process (Gladun, 1997, 1995,1972; Gladun & 
Vashchenko, 1975) was applied to computer train-
ing (machine learning). Regularity classifications 
and the predictions of the formation of unknown 
compounds with composition ABO3 were obtained 
separately for each of the three sets of proper-
ties of constituent components (attributes). As 

a result, we obtained three tables of predictions. 
Next, we compared the predictions in these three 
tables and made a decision on the existence of a 
given compound for which the predictions were 
not contradictory. The part of table illustrating 
the prediction of compounds formed by two- and 
four-valent elements is given in Table 1.

Table 1. Predictions of compounds with composition AIIBIVO3 

AII

BIV
Be Mg Ca Ti V Mn Fe Co Ni Cu Zn Ge Sr Pd Cd Sn Ba Hg Pb Ra

C ↔ ⊕ ⊕ © + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ + ⊕ + ⊕ © ⊕ © ⊕ ⊕

Si © ⊕ ⊕ + ⊗ ⊕ ⊕ © © ⊕ + ⊕ + ⊕ © ⊕ + ⊕ +

S © + + © © © + + + © + © © © © © +

Ti ↔ ⊕ ⊕ + + ⊕ ⊕ ⊕ ⊕ © ⊕ + ⊕ © ⊕ + ⊕ ⊕ ⊕ +

V ⊕ + + © + ⊕ ⊕ ⊕ + + © + ⊕ + © © + +

Mn + © ⊕ + + + © ⊕ © © © + ⊕ + © © ⊕ + © +

Ge + ⊕ ⊕ + + ⊕ ⊕ © + ⊕ © + ⊕ + ⊕ © ⊕ + ⊕ +

Se ⊕ © + + © © © © © © + © © © + © © © ©

Zr ↔ ↔ ⊕ + + + ↔ + + + © + ⊕ + ⊕ + ⊕ + ⊕ +

Mo ⊕ © + + © ⊕ © © + © + ⊕ + + + ⊕ + + +

Tc © + + + + + + + + + © + + + © + © +

Ru © + + + + + + + + + ⊕ ⊗ + + ⊕ + © +

Sn ⊕ + + © + ⊕ © + ⊕ + ⊕ + ⊕ + ⊕ © ⊕ +

Te ⊕ ⊕ + + ⊕ + © ⊕ ⊕ ⊕ + ⊕ + © + © © © +

Ce ↔ ⊕ ⊕ ⊗ + ⊕ + ⊕ ⊕ + ⊕ ⊕

Pr + + © + + ⊕ + + +

Tb - - + + + © + + ⊕

Hf ↔ ⊕ + + + + + ↔ + + + ⊕ + © © ⊕ ⊕

Ta + + + + + + + © + + + + + © +

W + + + + + + + + + + + + + + +

Re - - + + + + + + + + + + + + + + ©

Os - - ⊕ + + + + + + + + + ⊕ + © + ⊕

Ir ⊕ + + + + + + + + + ⊕ + + + ©

Pt - - © + + + + + + + + + + + + +

Pb ⊕ + + © © + + © ⊕ + ⊕ + ⊕ © ⊕ ⊕

Po + + + + + + + + + + © + + + ©

Th ↔ ⊕ ⊕ + + + + + + + + + ⊕ + ⊕ + ⊕ ⊕

Pa - - + + + + + + + + + + + + +

U ↔ ↔ © + + + + © + + + + © + ⊕ + ⊕



207

Application of Machine Training Methods to Design of New Inorganic Compounds

In the last three decades 90 predictions were 
tested experimentally. Only 3 predictions of com-
pounds with compositions VSiO3, CuCeO3 and 
PdRuO3 were erroneous, i.e., the error of predic-
tion was equal to 3%.

Prediction of the New Langbeinites 
with Composition A2B2(XO4)3

The more complicated compounds with composi-
tion A2B2(XO4)3 were designed (Kiselyova et al., 
2000) using pattern recognition method (Gladun, 
1997, 1995, 1972; Gladun & Vashchenko, 1975). 
The compounds with this composition and lang-
beinite crystal structure type belong to promising 
class of piezoelectric, ferroelectric, electro-optic, 
nonlinear optical, and luminescent substances.

The substances were classified into four classes: 
(1) compounds with composition A2B2(XO4)3 and 
langbeinite crystal structure type (29 examples); 
(2) compounds with composition A2B2(XO4)3 and 
K2Zn2(MoO4)3 crystal structure type (7 examples); 
(3) compounds with this composition and a crys-
tal structure different from those listed above (5 
examples), (4) non-formation of compounds with 
composition A2B2(XO4)3 under ambient conditions 
(26 examples).

Designations: + formation of compound 
with composition ABO3 is predicted; - forma-
tion of compound with composition ABO3 is not 
predicted; ⊕ compound with composition ABO3 
was synthesized and appropriate information 
was used in the computer training process; ↔ 
compound with composition ABO3 does not exist 
under normal conditions and this information was 
used in the computer training process; © predicted 
formation of compound with composition ABO3 
which was confirmed by experiment; ⊗ predicted 
formation of compound with composition ABO3 
which was not confirmed by experiment. Here 
and in other Tables the blank spaces correspond 
to the disagreement of the predictions with the 
use of different attribute sets.

Three sets of attributes were used for descrip-
tion of compounds:

1.  The distribution of electrons in the energy 
levels of isolated atoms of the chemical 
elements A, B and X and the ionic radii ac-
cording to Shannon of ions A+ (C.N. = 12), 
В2+ (C.N. = 6), and Х6+ (C.N. = 4).

2.  The first three ionization potentials, the 
above-mentioned ionic radii according to 
Shannon, the electronegativities accord-
ing to Pauling, the standard isobaric heat 
capacities, and the standard entropies of 
individual substance, Debye temperatures, 
energies of crystal lattice, the melting and 
boiling points, heats of melting and boiling, 
and the relations of atomic number to atomic 
weight for elements A, B, and X.

3.  The melting points, the standard enthalpies of 
formation, isobaric heat capacities and Gibbs 
energies of appropriate simple oxides A2O, 
BO и XO3, and the ionic radii according to 
Shannon of ions in these oxides.

The results of comparison of predictions using 
above-mentioned attributes sets are shown in Table 
2. In the last decade, 17 predictions were tested 
experimentally. In five cases the results turned out 
to be incorrect, i.e., the prediction error for these 
complicated compounds was 29%.

Designations: L formation of compound with 
the langbeinite crystal structure type is predicted; 
K - formation of compound with the crystal struc-
ture type K2Zn2(MoO4)3 is predicted; - the crystal 
structure differing from those listed above is 
predicted; L, K compound with corresponding 
type of crystal structure was synthesized and ap-
propriate information was used in the computer 
training process; ↔ compound with the crystal 
structure differing from those listed above does 
not exist under normal conditions and this infor-
mation was used in the computer training process; 
(*) compound A2B2(XO4)3 is not formed and this 
fact was used in the computer learning process; 
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* formation of compound with composition 
A2B2(XO4)3 is not predicted; © prediction was 
confirmed experimentally; ў prediction was not 
confirmed experimentally; here and in other Tables 
? corresponds to the indefinite result.

Prediction of the New 
Intermetallic Compounds 
with Composition AB2Si2

The intermetallics with ThCr2Si2 crystal structure 
type are investigated intensively because of their 
ferro- and anti-ferromagnetic properties. We 
predicted the new compounds with this crystal 
structure and with composition AB2Si2 (Kiselyova 
& Savitskii, 1983) using software (Gladun, 1997, 
1995, 1972; Gladun & Vashchenko, 1975).

Each substance was represented in the 
computer memory as a set of especially coded 
values (Gladun, 1997, 1995, 1972; Gladun & 
Vashchenko, 1975) of the properties of elements 
A and B, whose class ((1) a compound with crystal 
structure type ThCr2Si2 and (2) a compound with 
the crystal structure differing from ThCr2Si2 or 
non-formation of compound with composition 

AB2Si2 under normal conditions) is indicated as 
the target feature. The searches for classifying 
regularities and predictions were carried out us-
ing two sets of properties of elements A and B:

1.  The distribution of electrons in the energy 
levels of isolated atoms of the chemical 
elements A and B.

2.  The first three ionization potentials, the 
metal radii according to Bokii and Belov, the 
standard entropies of individual substance, 
the melting points, the number of complete 
electronic shells, the number of electrons in 
incomplete s-, p-, d-, f-electronic shells for 
the atoms of elements A and B.

Shown in Table 3 are some of the predictions 
of new compounds of this type. An experimental 
check showed that out of 120 predictions checked 
only fifteen were wrong (the prediction error is 
13%).

Designations: +)formation of compound with 
the crystal structure type ThCr2Si2 is predicted; 
- formation of compound with the crystal structure 
type ThCr2Si2 is not predicted; ⊕ compound with 

Table 2. Part of predictions of the crystal structure type for compounds with composition A2B2(XO4)3 

X S Cr Mo W

A
B

Na K Rb Cs Tl Na K Rb Cs Tl Na K Rb Cs Tl Na K Rb Cs Tl

Mg Lў (L) (L) (*) L L L© L© L© Kў (K) (L) (L) (L) ↔ (L) L© L

Ca (*) (L) L© (L) (*) L L L (*) ? ? ? ? (*) * ? ? ?

Mn (*) (L) (L) L (L) L (L) L© L K ↔ (L) (L) (L)

Fe * L© L© (L) L K L L L K K ? ? ? K

Co (*) (L) L© (L) L K L L L (K) (L) (L) ↔ K

Ni (*) (L) L© L L L L L L K (K) (L) (L) (L)

Cu (*) L * L L K L L L K (K) ? ? ? K

Zn * (L) L * L L K L L L ↔ (K) (K) - (K) Kў

Sr (*) ? ? (*) * * ? ? ? (*) ? ? ? ? (*) * * * *

Cd (*) (L) (L) (L) K ↔ (L) Kў (*) L L L

Ba (*) (*) (*) (*) * * (*) * * * * *

Pb * (*) * *© * * (*) *© (*) *ў * (*) * (*) (*) *
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the crystal structure type ThCr2Si2 was synthesized 
and appropriate information was used in the 
computer training process; ↔ compound with the 
crystal structure type ThCr2Si2 does not exist 
under normal conditions and this fact was used 
in the computer training process; © - predicted 
formation of compound with the crystal structure 
type ThCr2Si2 which is confirmed by experiment; 
⊗ predicted formation of compound with the 
crystal structure type ThCr2Si2 which is not con-

firmed by experiment; ∅ predicted absence of 
compound with the crystal structure type ThCr2Si2 
which is not confirmed by experiment.

The advantage of computer-assisted design 
methods is the possibility of fast correction of 
the classification regularities with the appearance 
of new compounds for which the experimental 
information contradicts the obtained predictions. 
To this end, one should just add new examples 
to those previously used in the computer analysis 

Table 3. Part of predictions of the ThCr2Si2 crystal structure type for compounds with composition AB2Si2 

BA Cr Mn Fe Co Ni Cu Zn Ru Rh Pd Ag Os Ir Pt Au

Ca + ⊕ ↔ ⊕ ⊕ ⊕ ⊕ + + © ⊕ + + + ⊕

Sr ⊕ ⊕ ⊕ ⊕ ⊕ - - ⊕ © ⊕

Y ⊕ ⊕ ⊕ ⊕ ⊕ - - + © + ⊕

Zr + + ⊕ ⊕ ⊕ - + +

Ba + ⊕ + ⊕ ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕

La + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ © © ⊕ + © ⊕ ⊕

Ce ↔ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ © ⊕ ⊕ © © ⊕ ⊕

Pr + ⊕ ⊕ ⊕ ⊕ © ⊕ © + © ⊕ © © + ⊕

Nd © ⊕ ⊕ ⊕ ⊕ © ⊕ ⊕ © © ⊕ + © ⊕ ⊕

Pm + + + + ⊕ + + + + + + + + + +

Sm © ⊕ ⊕ ⊕ ⊕ © + ⊕ + © ⊕ + © ⊕ ⊕

Eu + + ⊕ ⊕ ⊕ ⊕ © + © © ⊕ + © ⊕ ⊕

Gd © ⊕ ⊕ ⊕ ⊕ © + © © ⊕ ⊕ © ⊕ ⊕ ⊕

Tb © ⊕ ⊕ ⊕ ⊕ © + ⊕ © © + © © + ⊕

Dy © ⊕ ⊕ ⊕ ⊕ © + ⊕ © © © + + ⊕ ⊕

Ho © ⊕ ⊕ ⊕ ⊕ © + © + © + © + ⊕ ⊕

Er © ⊕ ⊕ ⊕ ⊕ © + ⊕ © © + © © ⊕ ⊕

Tm © © ⊕ ⊕ ⊕ © + © + © © + + ⊕ +

Yb © ⊕ ⊕ ⊕ ⊕ © + ⊕ ⊕ ⊕ ⊕ + + ⊕ ⊕

Lu © © ⊕ ⊕ ⊕ © + © © © + + + ⊕ +

Hf + + ↔ ⊕ ⊕

Ac + + + + + + + + + + + + + +

Th ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ © © © + © © © ©

Pa + + + + + + + + + + + + +

U © © © ⊕ © © © © + © ⊕ © ©

Np ⊕ ⊕ ⊕ ⊕ ⊕ © © © + © ⊕ ⊕ ⊕

Pu © © © © © © © © + © ⊕ ⊕ ©+

Am + + + + + + + + + + + + + +

Cm + + + + + + + + + + + + +
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and perform additional training of the information-
analytical system. Taking into account that in the 
past years 120 new compounds with composition 
AB2Si2 were synthesized, it was decided to carry 
out computer training with inclusion of newer 
data, with wider combination of properties of the 
elements and with a set of new pattern recogni-
tion procedures.

Recently we predicted the formation and 
crystal structure type under ambient conditions 
for compounds with composition AB2X2 (X – B, 
Al, Si, P, Ga, Ge, As, Se, Sn, Sb, or Te). The IAS 
developed by us was used for computer training.

The substances were classified into seventeen 
classes: (1) compounds with composition AB2X2 
and ThCr2Si2 crystal structure type (649 examples); 
(2) compounds with FeMo2B2 structure type 
(261 examples); (3) compounds with CaAl2Si2 
structure type (133 examples); (4) compounds 
with CaBe2Ge2 structure type (86 examples); (5) 
compounds with NiMo2B2 structure type (58 ex-
amples); (6) compounds with CoSc2Si2 structure 
type (47 examples); (7) compounds with ZnK2O2 
structure type (31 examples); (8) compounds 
with CaRh2B2 structure type (24 examples); (9) 
compounds with AlMn2B2 structure type (22 ex-
amples); (10) compounds with PdK2P2 structure 
type (18 examples); (11) compounds with PtK2S2 
structure type (12 examples); (12) compounds 
with LaPt2Ge2 structure type (12 examples); (13) 
compounds with SnU2Pt2 structure type (11 ex-
amples); (14) compounds with IrMo2B2 structure 
type (7 examples); (15) compounds with BaCu2S2 
structure type (7 examples); (16) compounds with 
this composition and a crystal structure different 
from those listed above (99 examples), (17) non-
formation of compounds with composition AB2X2 
under ambient conditions (1179 examples).

The attribute set includes 32*3=96 properties 
of atoms of elements A, B and X (the first three 
energies of ionization, the thermal conductivities, 
the molar heat capacities, the electronegativities 
according to Pauling, the enthalpies of atomiza-
tion and vaporization, the group and quantum 

numbers, the numbers of valence electrons, Debye 
temperatures, Mendeleev numbers, the melting 
and boiling points, the pseudo-potential radii ac-
cording to Zunger, the metal radii according to 
Waber, the covalent radii, the chemical potentials 
according to Miedema, etc.).

The prediction procedure for the type of the 
crystal structure of compounds included three 
tasks:

1.  Prediction of A–B–X chemical systems with 
the formation and non-formation of AB2X2 
compounds.

2.  Multiclass prediction of the type of crys-
tal structure (seventeen above-mentioned 
classes).

3.  For classes 1–3 and 5, successive division 
of systems into three classes, for example, 
class 1 - the compounds with ThCr2Si2 crystal 
structure type ; class 2 - compounds with the 
structure different from ThCr2Si2; and class 
3 - the absence of AB2X2 compounds in the 
A–B–X system.

The best algorithms according to the results 
of examination recognition with cross validation 
(mostly, these were linear machine methods, 
k-nearest neighbors, Fisher’s linear discrimina-
tor, neural networks, and ConFor) were used for 
collective decision making. The best algorithm 
for collective decision making when solving this 
problem and like questions was chosen on the 
basis of recognition of 100 objects chosen ran-
domly by a uniform distribution. These objects 
were eliminated from the training sample both 
during the training process and during the tuning 
of collective decision making algorithms. By the 
results of recognition of 100 objects, we evaluated 
the accuracy of collective decision making. From 
the set of constructed recognition algorithms and 
algorithms for collective decision making, we 
chose a subset of the most accurate algorithms 
(most frequently, this was the complex committee 
method—averaging). At the final stage, the pro-
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cesses of training of the chosen algorithms were 
initiated again on the original training sample. Note 
that the application of collective algorithms has 
allowed us to substantially increase the reliability 
of prediction. As a result, for each of 11 AB2X2 
compositions (A and B are various elements, and 
X is B, Al, Si, P, Ga, Ge, As, Se, Sn, Sb, or Te), 
we obtained six tables of predictions (a table of 
prediction of the possibility of formation of a 
compound, a table of multiclass prediction, and 
four tables of predictions for classes 1, 2, and 3 
and 5 in which all metal systems are classified into 
three groups). Next, we compared the predictions 
from these six tables and made a decision on the 
existence of a given compound and on the type 
of its crystal structure provided that the predic-
tions were not contradictory. Table 4 shows a 
part of predictions obtained in this way for new 
compounds with composition AB2Si2.

Designations: (1) prediction of compound 
AB2Si2 with ThCr2Si2 crystal structure type; (2) 
prediction of compound AB2Si2 with CaAl2Si2 

crystal structure type; (3) prediction of compound 
AB2Si2 with CaBe2Ge2 crystal structure type; (4) 
the crystal structure differing from those listed 
above is predicted; (5) formation of compound 
with composition AB2Si2 is not predicted; # stands 
for the designation of objects that have been used 
in computer training.

Estimation of the Physical 
Properties of Inorganic Compounds

The prediction of the numerical intrinsic physical 
properties (for example, melting point of com-
pound at atmospheric pressure, critical tempera-
ture of transition to superconducting state, etc.) 
is the most difficult problem at computer-assisted 
design of inorganic compounds using computer 
training. In this case, only a threshold estimation 
of the property (more or less than a threshold) is 
possible. The problem is a search for such thresh-
old (and set of attributes) in order to fulfill the 
basic hypothesis of pattern recognition methods 

Table 4. Part of predictions of the crystal structure type for compounds with composition AB2Si2 

A 
B

Ca Sc Sr Y Zr Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np

Mg 2 ? #1 #4 #4

Al #2 2 #2 #2 5 #2 #2 #2 #2 2 #2 #2 #2 #2 #2 #2 #2 2 #2 2 ? ? #4 ?

Cr 1 1 1 #1 5 1 1 #5 1 #1 1 #1 1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1

Mn #1 1 #1 #1 #1 #1 #1 #1 #1 1 #1 1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1

Fe #5 #4 1 #1 #1 1 #1 #1 #1 #1 1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1

Co #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1

Ni #1 #1 #1 #1 #1 1 #1 #1 #1 #1 1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1

Cu #1 #1 #1 #1 1 #1 #1 #1 #1 #1 1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1

Zn #1 1 #1 1 #1 1 1 1 #1 1 1 #1 1 1 1 1 1 1 1 1 1 1 1 1

Ru 1 1 1 #1 1 #1 #1 #1 #1 1 #1 1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1

Rh 1 1 1 #1 1 #4 1 #1 1 1 1 1 #1 #1 #1 #1 1 #1 1 #1 #1 #1 1 #1 #1

Pd #1 1 #1 #1 1 #1 #1 #1 #1 1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1

Ag #1 1 #1 1 #1 #1 #1 #1 #1 1 #1 #1 #1 1 #1 1 1 1 #1 1 1 1 1 1

Os 1 1 1 1 5 1 1 #1 #1 1 1 1 1 #1 #1 1 #1 #1 1 1 1 #1 1 #1 #1

Ir 1 1 1 #1 1 #4 #1 #1 #1 #1 1 #1 #1 #1 #1 1 1 #1 1 1 1 #3 #3

Pt #3 1 #3 1 #4 #3 #1 #3 #1 #3 #3 #1 #1 #3 #1 #1 #1 #1 #1 #3

Au #1 1 #1 #1 #1 #1 #1 #1 #1 1 #1 #1 #1 #1 #1 #1 #1 1 #1 1 #1 1 #1 #3
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- hypothesis of compactness. We succeeded in 
estimating of some physical properties of inorganic 
compounds (the critical temperature of transition 
to superconducting state (Savitskii et al., 1979), 
the melting point and bandgap (Kiselyova et al., 
2007a, 2007b), etc.). In particular we predicted 
wide bandgap semiconductors with chalcopyrite 
crystal structure using IAS.

The chalcopyrites with composition ABX2 are 
promising for the development of new semicon-
ducting, nonlinear optical, and other materials 
for electronics. The aim of our investigations was 
to design new semiconducting compounds with 
crystal structure of chalcopyrite and band gap more 
than 2 eV for developing optoelectronic devices.

The following parameters of chemical ele-
ments were used for the description of chemical 
compounds:

• The electronegativity in the Martynov-
Batsanov scale of values Dc ,where 
∆c c c c= − −| |2 C A B

• Atomic electrovalent ZA, ZB, ZC (for transi-
tion metals, the group number of elements 
is used as Z);

• Mean Born exponent; 

n
n n nA B C=
+ + 2
4

;

• The chemical scale c of Pettifor;
• The proportion: 

( / ) ( ) [ . ( ) ],I Z
I
Z

I
Zz AC

z
A

z
C= − +6 0 1

where Iz - final ionization potential;
• Atomic radius.

Data for computer training has been extracted 
from database “Bandgap” (Kiselyova et al., 2010). 
The two classes were considered: (1) chalcopyrites 
with ΔE>2 eV and (2) chalcopyrites with ΔE<2 
eV. Table 5 contains experimental values and 
results of examination of prediction of band gap 
of known chalcopyrites using separate methods 
of pattern recognition.

The following methods were used:

• EC: Estimate calculation algorithms,
• LDF: Fisher’s linear discriminant,
• LM: Linear machine,
• MR: Algorithm of logical regularities,
• NN: Neural networks,
• KNN: k–nearest neighbors,
• SVM: Support vector machine,
• SWS: Statistically weighted syndromes,
• TA: Deadlock test algorithm,
• LG: Logical regularities of recognized 

object,
• DT: Method of binary decisive trees,
• CF: ConFor,
• SVR: Support vector regression.

Recognition uses procedure of cross-validation 
(excepting CF and SVR). The best results were 
achieved using algorithms of logical regularities, 
linear machine and ConFor (in the last case the 
examination recognition of 100 objects chosen 
randomly by a uniform distribution and eliminated 
from the training sample was used for determina-
tion of predicting accuracy). The prediction of 
band gap of new chalcopyrites was carried out 
using results of algorithms of logical regularities 
and linear machine on the basis of application 
of the following collective methods to making 
a decision:

• BM: Bayesian method,
• C&S; Clustering and selection,
• DT: Decision templates,
• WDM: Woods dynamic method,
• CS: Convex stabilizer,
• CM-MV: Committee method - majority 

voting,
• CM-A: Committee method – average 

value,
• LC: Logical correction.

Previous control recognition showed that the 
best results of collective recognition could be 
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Table 5. Prediction of ΔE of known chalcopyrites (threshold = 2 eV) 

Compound Experimental Prediction

class ΔE, 
eV

EC LDF LM MR NN KNN SVM SWS TA LG DT CF SVR

CuAlS2 1 3.5 1 1 1 1 1 1 1 1 1 1 1 1 1

CuGaS2 1 2.44 2 1 1 1 1 1 1 2 2 1 2 1 1

CuInS2 2 1.5 2 2 1 ? 2 2 2 2 2 1 2 2 2

CuAlSe2 1 2.67 2 1 1 1 1 1 1 2 2 1 2 1 1

CuGaSe2 2 1.63 2 1 1 1 1 1 1 2 2 1 2 2 2

CuInSe2 2 0.95 2 2 2 2 2 2 2 2 2 2 2 2 2

CuAlTe2 1 2.06 2 2 2 2 1 1 1 2 2 2 2 1 1

CuGaTe2 2 1.18 2 2 2 2 1 1 2 2 2 2 2 2 2

CuInTe2 2 0.88 2 2 2 2 2 2 2 2 2 2 2 2 2

AgAlS2 1 3.13 2 1 1 1 1 1 1 1 1 1 1 1 1

AgGaS2 1 2.75 2 1 1 1 1 1 1 2 1 1 2 1 1

AgAlSe2 1 2.55 2 1 1 1 1 1 1 2 1 1 2 1 1

AgGaSe2 2 1.65 2 1 2 2 1 1 1 2 2 2 2 2 2

AgInSe2 2 1.24 2 2 2 2 2 2 2 2 2 2 2 2 2

AgAlTe2 2 1.8 2 2 2 2 1 1 2 2 2 2 2 2 2

AgGaTe2 2 1.1 2 2 2 2 1 2 2 2 2 2 2 2 2

AgInTe2 2 0.96 2 2 2 2 2 2 2 2 ? 2 2 2 2

ZnSiP2 1 2.07 2 2 1 1 1 2 2 1 1 1 2 1 1

ZnSiAs2 1 2.1 2 2 1 1 1 2 2 1 1 1 2 1 1

ZnGeN2 1 2.9 2 2 1 1 1 1 2 1 1 1 2 1 1

ZnGeP2 1 2.1 2 2 1 1 1 2 2 1 1 1 2 1 1

ZnGeAs2 2 1.16 2 2 2 2 2 2 2 2 2 2 2 2 2

ZnSnP2 2 1.45 2 2 2 2 2 2 2 2 2 2 2 2 2

ZnSnAs2 2 0.74 2 2 2 2 2 2 2 2 2 2 2 2 2

ZnSnSb2 2 0.4 2 2 2 2 2 2 2 2 2 2 2 2 2

CdSiP2 1 2.2 2 2 1 1 1 2 2 1 1 1 2 1 1

CdGeP2 2 1.8 2 2 2 2 1 2 2 1 1 2 2 2 2

CdGeAs2 2 0.53 2 2 2 2 1 2 2 2 2 2 2 2 2

CdSnP2 2 1.16 2 2 2 2 2 2 2 2 2 2 2 2 2

CdSnAs2 2 0.3 2 2 2 2 2 2 2 2 2 2 2 2 2

AgInS2 2 1.9 2 2 2 2 2 2 2 2 2 2 2 2 2

CdSiAs2 2 1.51 2 2 2 2 1 2 2 1 1 2 2 2 2

CuFeS2 2 0.53 1 2 2 1 1 1 2 1 1 1 2 2 2

CuFeSe2 2 0.16 2 2 2 ? 1 2 2 2 2 2 2 2 2

CuFeTe2 2 0.1 2 2 2 2 1 2 2 2 2 2 2 2 2

LiGaTe2 1 2.31 2 2 2 1 2 2 2 2 2 2 2 1 1

LiInTe2 2 1.46 2 2 2 2 2 2 2 2 2 2 2 2 2

AgFeSe2 2 0.23 2 2 2 2 1 2 2 2 2 2 2 2 2

MgSiP2 1 2.35 2 1 1 1 1 2 2 1 ? 1 2 1 1

MnGeP2 2 0.24 2 2 2 1 1 2 2 1 1 1 2 2 2

MnGeAs2 2 0.6 2 2 2 2 2 2 2 2 2 2 2 2 2
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achieved using Bayesian method and convex 
stabilizer strategies (error of predicting equals 
0%). The results of these algorithms were used 
for making a decision at prediction of band gap 
of new chalcopyrites (Table 6). Thus three new 
compounds (ZnAlS2, ZnAlSe2 and BeCN2) are 
promising for opto-electronic applications (Table 
6). The following designations were used: (1) 
chalcopyrites with ΔE>2 eV and (2) chalcopyrites 
with ΔE<2 eV.

CONCLUSION

The application of machine training and pattern 
recognition methods to the computer-assisted 
design of inorganic compounds allows one to find 
complex classification regularities that make it 
possible to predict the membership of new chemi-
cal systems in one class of substances or another 
on the basis of knowledge of the well-known 
properties of the components of these systems — 
chemical elements. Using these methods it was 

possible to carry out the prediction of thousands 
of new compounds and estimation of some of their 
properties. Computer-assisted design allows one 
to substantially reduce the number of complex and 
expensive experiments in the search for inorganic 
compounds with predefined properties, replacing 
them by computation. The experimental verifica-
tion of the results of computer-assisted design 
shows that the average accuracy of predicting is 
higher than 80%.
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Table 6. Prediction of ΔE of new chalcopyrites (calculations using collective methods) (threshold = 2 eV) 

Compound Prediction of ΔE BM C&S DT WDM CS CM-MV CM-A LC

ZnAlS2 1 1 1 1 ? 1 1 1 1

ZnAlSe2 1 1 1 1 1 1 1 1 1

ZnAlTe2 2 2 2 2 ? 2 2 2 2

AgFeS2 2 2 2 2 2 2 2 2 2

AgFeTe2 2 2 2 2 2 2 2 2 2

ZnGaTe2 2 2 2 2 ? 2 2 2 2

CdGaTe2 2 2 2 2 ? 2 2 2 2

HgGaTe2 2 2 2 2 ? 2 2 2 2

BeCN2 1 1 1 1 1 1 1 1 1
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KEY TERMS AND DEFINITIONS

Concept: A generalized model of some class 
of objects that provides for recognizing and gen-
erating models of specific elements of this class.

CONFOR: (CONcept FORmation): A set 
of software tools intended for the logical analysis 
of large volumes of experimental data (Gladun, 
1997, 1995, 1972; Gladun & Vashchenko, 1975) 
using the special computer memory structure – 
growing network - with the purpose of searching 
for regularities.

Design of New Inorganic Compounds: A 
search for combination of chemical elements and 
their ratio (i.e., determining qualitative and quanti-
tative compositions) for the synthesis (under given 
conditions) of the predefined space molecular or 
crystal structure of a compound that possesses the 
required functional properties. It is the knowledge 
of the properties of chemical elements and data 
about other compounds already investigated that 
constitute initial information for the calculations.

Information-Analytical System (IAS): A 
system intended for data retrieval on known 
compounds, predicting inorganic compounds 
not yet synthesized, and the forecasting of their 
properties. This system employs databases on 
properties of inorganic compounds and materials, 
a database of elements’ properties, a subsystem 
of data analysis based on algorithms of pattern 

recognition, a subsystem of selecting the most 
important attributes, a visualization subsystem, a 
knowledge base (tasks base), a predictions base, 
and a managing subsystem (Figure 1).

Inorganic Compound: A compound which 
does not contain carbon (except for carbides, 
cyanides, carbonates, carbon oxides, and some 
other compounds that attributed traditionally to 
inorganic substances).

Prediction: An identification (classification) 
of a new object belonging to a certain class in 
compliance with a fixed classification scheme.

Quality (Accuracy) of the Algorithm: A 
percentage of correctly recognized objects.

RECOGNITION: A set of software tools de-
veloped at A. A. Dorodnicyn Computing Centre, 
Russian Academy of Sciences (CC RAS) (Zhurav-
lev et al., 2006). This multifunctional system 
of pattern recognition includes the well-known 
methods of k–nearest neighbors, Fisher’s linear 
discriminator, linear machine, neural networks, 
support vector machine, genetic algorithm, and 
the special algorithms developed by the CC RAS: 
estimate calculating algorithms, LoReg (Logical 
Regularities), deadlock test algorithm, statistical 
weighted syndromes, etc. The system contains 
also a set of collective methods for final decision 
making (algebraic, logical, and heuristic correc-
tors) and software for cluster-analysis.


