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Abstract—New chalcospinels of the most common compositions were predicted: AIBIIICIVX4 (X = S or Se)
and AIIBIIICIIIS4 (A, B, and C are various chemical elements). They are promising for the search for new
materials for magneto-optical memory elements, sensors, and anodes in sodium-ion batteries. The parameter
“a” values of their crystal lattice are estimated. When predicting, only the values of the properties of chemical
elements were used. The calculations were carried out using machine learning programs that are part of the
information-analytical system developed by the authors (various ensembles of algorithms of the binary deci-
sion trees, the linear machine, the search for logical regularities of classes, the support vector machine, Fisher
linear discriminant, the k-nearest neighbors, the learning a multilayer perceptron, and a neural network) for
predicting chalcospinels not yet obtained, as well as an extensive family of regression methods, presented in
the scikit-learn package for the Python language, and multilevel machine learning methods that were pro-
posed by the authors for estimation of the lattice parameter value of new chalcospinels. The prediction accu-
racy of new chalcospinels according to the results of the cross-validation is not lower than 80%, and the pre-
diction accuracy of the parameter of their crystal lattice (according to the results of calculating the mean abso-
lute error when cross-validation in the leave-one-out mode) is ±0.1 Å. The effectiveness of using multilevel
machine learning methods to predict the physical properties of substances is shown.
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INTRODUCTION

A unique combination of magnetic, optical, and
semiconductor properties makes chalcogenide spinels
promising for creation of magneto-optical memory
and sensor elements [1–7]. The possibility of using
these substances as anodes in sodium-ion batteries
was shown [8]. Application of simple chalcospinels
does not meet the requirements of contemporary elec-
tronics; thus, studies devoted to obtaining and
researching spinels more complicated in composition
are carried out [1, 3, 9, 10]. However, the literature
contains information about a small range of synthe-
sized multicomponent spinels. In particular, the most
complete information about them can be found in the
Phases database on the properties of inorganic com-
pounds [11], prepared by us, which reflects data on
less than 80 quaternary spinels with sulfur and sele-
nium of various compositions.

The aim of this work is to predict new spinels of
composition ABCX4, where A, B, and C are different
chemical elements and X is S or Se.

ANALYSIS OF EXISTING METHODS 
FOR PREDICTING NEW SPINELS

The Phases database [11] contains information
about 28 spinels of composition ABCS4 and 5 of com-
position ABCSe4 (Table 1). In most cases, these com-
positions correspond to solid solutions.

Taking practical importance of chalcospinels into
account, multiple attempts to find criteria of their for-
mation, including properties of chemical elements in
their composition, were made [21–32]. In the vast
majority of cases, these criteria referred to three-com-
ponent chalcospinels of composition AB2X4.

In [21, 22], it was proposed to use projections in

coordinates KAB = , where χA and χB are

the electronegativities of elements A and B,  =
 +  + 1.155(rA + rX)(rB + rX), where

rA, rB, and rX are the ionic radii of the corresponding
ions of elements A, B, and X, in order to separate
domains of existence of various crystallographic struc-
tures of substances of composition AB2X4. In article
[23], it was proposed to use for these purposes projec-
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Table 1. Known chalcospinels

Composition Link Composition Link Composition Link

LiInSnS4 [10] CuInSnS4 [13] CuCoRhS4 [15]
CuVTiS4 [12, 13] AgCrSnS4 [15] CdSbInS4 [18]
CuCrSnS4 [12–14] AgInZrS4 [14] ZnCrGaS4 [19]
CuCrTiS4 [13, 14] AgInSnS4 [3] HgCrGaS4 [19]
CuCoTiS4 [13] CuCrVS4 [3] CdCrInS4 [20]
CuTiZrS4 [13] CuCrRhS4 [14, 16] ZnCrInS4 [20]
CuTiSnS4 [13] MnCrInS4 [16] CuCrSnSe4 [14]
CuVZrS4 [13] FeCrInS4 [16] CuCrTiSe4 [14]
CuVSnS4 [13] CoCrInS4 [16] CuCrZrSe4 [14]
CuCrZrS4 [12–14] NiCrInS4 [17] CuCrHfSe4 [14]
CuCrHfS4 [14] CdCrGaS4 [17] AgCrSnSe4 [14]
tions in coordinates of ionic radii rA and rB; projections
in coordinates of pseudo-potential radii were pro-
posed in [24, 25]; and ionic radii according to Shan-
non–Prewitt of elements A and B were used to sepa-
rate inverse and normal chalcospinels in [24]. Dia-
grams in coordinates of pseudo-potential orbital radii
were used in [26–28] for determination of stability
domains of chalcospinels. Projection in coordinates
“sum of ionic radii by Shannon–Prewitt– sum of
electronegativities of A, B, and X” was applied in [29]
for classification of chalcogenide substances of com-
position AB2X4 with various types of crystal lattice.
Ionic radii by Shannon–Prewitt [30] and ratios of
ionic radii [31] were used to search for the limits of
existence of the main structural families of the afore-
mentioned composition.

In [32], new chalcogenide substances of composi-
tion AB2X4 with various types of crystalline lattice
were predicted on the basis of quantum-mechanical
computations.

Analysis of various projections of points corre-
sponding to different classes of substances of compo-
sition ABCX4 allows making a conclusion that the use
of only dimensional factors and electronegativities is
not enough for formation of criteria which allow reli-
ably predicting new chalcospinels of the aforemen-
tioned composition. It is necessary to include other
properties of chemical elements into the sought crite-
ria as well. Exactly such an approach was suggested by
us for predicting chalcospinels of composition AB2X4
[33, 34]. The use of the method of machine learning
[35] allowed forming criteria which include a number
of parameters of the components (electronegativities,
ionization potentials, covalent radii, and other proper-
ties of the elements, as well as thermodynamic proper-
ties of simple chalcogenides). These criteria provided
the possibility to predict not yet obtained chalco-
genide substances of composition AB2X4 and the type
INORGANIC MATERIALS: APPLIED RESEARCH  Vol.
of their crystal structure at room temperature and
atmospheric pressure [33, 34]. Experimental verifica-
tion of the obtained predictions showed that their
average accuracy was higher than 78%. An attempt to
use a machine learning program based on the method
of potential functions in [36] was less successful.
According to experimental verification, the accuracy
of predictions was below 37%.

METHODOLOGY

In order to solve the formulated problem, we
applied our developed information-analytical system
(IAS) [37], which unites databases on properties of
inorganic substances and materials with a subsystem
of information analysis and search for multidimen-
sional regularities based on machine learning meth-
ods. The procedure of using the IAS for searching for
complicated regularities in chemical information and
predicting of new inorganic phases as well as estima-
tion of their properties included the following stages:

(1) Selection of examples for computer-aided
analysis;

(2) Selection of the initial set of properties of ele-
ments for formation of the sought criteria;

(3) Searching for properties of elements and simple
algebraic functions of these properties which would
provide the greatest separation of various classes of
phases of the aforementioned composition;

(4) Computer-aided analysis of the selected infor-
mation with further selection of machine learning
algorithms which would allow forming criteria provid-
ing the best separation of different classes of sub-
stances;

(5) The use of found multidimensional criteria for
predicting not yet obtained phases and estimating their
properties.
 12  No. 2  2021
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Let us consider the methodology of application of
the IAS for predicting chalcospinels of composition
ABCX4 at different stages in more detail.

(I) Selection of examples for computer-aided analysis
The main source of the initial information for com-

puter-aided analysis was the Phases database [11] as
part of IAS. The most widespread compositions were
selected: AIBIIICIVX4 (X = S or Se) and AIIBIIICIIIS4.
In the second case of machine learning, data on triple
substances of composition  were added to the
selection for analysis, which allowed increasing the
accuracy of further prediction.

(II) Selection of the initial set of properties of com-
ponents for formation of the sought criteria

Information about substances is represented in
computer memory in the form of a matrix whose rows
included the set of values of parameters of elements in
a specific substance with indication to which class it
belongs. Selection of the initial properties of elements
is based on existing concepts of physical and chemical
nature of the researched substances. Information
about properties of elements is obtained from our
developed database Elements (http://phases.imet-
db.ru/elements). The first two stages resulted in for-
mation of selection of set for further computer-aided
analysis (learning sample).

(III) Finding of the most important properties of
elements and simple algebraic functions of these prop-
erties for classification

The properties of elements and automatically gen-
erated algebraic functions of these properties which
are the most significant for separation of different
classes of substances were selected using a special soft-
ware package [38] included in IAS. The use of alge-
braic functions of properties of elements simplifies
further formation of the sought criteria. It is necessary
to note that addition of such functions significantly
increases the number of parameters of components (to
hundreds and even thousands), which also increases
the dimension of the feature space. Thus selection of
only the most significant algebraic functions for fur-
ther inclusion in the sought criterion substantially
accelerates the process of its formation and often pro-
motes increased prediction accuracy. The package
[38] results in finding parameters which separate the
given classes of substances in the best possible way.

(IV) Computer-aided analysis of the selected infor-
mation

Criteria making it possible to predict new chalco-
spinels were sought using a complex of 15 machine
learning programs [35, 39] as part of IAS [37]. The
applied programs made it possible to distinguish
domains in multidimensional space of properties of
components which correspond to known compounds
with spinel structure. The accuracy of predicting tak-
ing the formed criteria into account was estimated
using the widely applied common procedure of cross-
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validation, which is described in detail in [39]. As a
result, the most accurate machine learning algorithms
were selected for solving the given problem. In order to
compensate errors of separate machine learning algo-
rithms and to obtain a more accurate solution, we
applied the procedure of collective decision making
based on special packages [39] included in IAS. The
accuracy of generalized criteria obtained using these
packages was estimated using test detection of infor-
mation about the given amount of substances, data on
which was randomly selected from learning samples
and was not used in machine learning (at the final
stage of prediction, these test cases were returned back
to the sample for machine learning). It is necessary to
note that the use of collective methods is a good way to
increase prediction accuracy and is widely applied in
various areas [40].

(V) Prediction of not yet obtained chalcospinels
When predicting new chalcospinels, we used only

data on the properties of elements. All the predictions
are for atmospheric pressure and room temperature.
The procedure of prediction and formation of predic-
tion tables is carried out in IAS automatically. The user
specifies only sets of symbols of elements.

All the mentioned procedures of machine learning
and prediction were performed separately for compo-
sitions AIBIIICIVX4 (X = S or Se) and AIIBIIICIIIS4.

COMPUTATION
Composition AIBIIICIVX4 (X = S or Se)

After expert evaluation, the sample for computer
analysis included information on 20 chalcospinels of
composition AIBIIICIVX4 and 103 compounds with a
crystal structure other than spinel under normal con-
ditions, as well as 10 systems A2X–B2X3–CX2 which
do not form compounds of composition ABCX4.

Composition AIIBIIICIIIS4

Information about 13 chalcospinels of composition
AIIBIIICIIIS4 and 20 compounds with a crystal struc-
ture different from spinel under normal conditions was
selected in the sample for machine learning. The
learning sample also contains examples of 48 spinels of
composition  90 compounds of this compo-
sition with a crystal structure other than spinel, and
18 AS–B2S3 systems in which compounds of compo-
sition AB2S4 are not formed.

In both problems, the initial set of parameters of
components includes the following properties of
chemical elements: covalent radius (by Bokii–Belov),
pseudopotential radius (by Zunger), ionic radius (by
Shannon–Prewitt), distances to core (S6) and valence
electrons (S5) (by Schubert), first, second and third
ionization potentials of atoms (E5, E6, E7), numbers
(by Mendeleev–Pettifor) (M1–M11), quantum num-
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Table 2. Prediction of a spinel crystal structure type in compounds of composition AIBIIICIVX4

X S Se

AI Cu Ag Cu Ag

CIVBIII Ti Zr Sn Hf Ti Zr Sn Hf Ti Zr Sn Hf Ti Zr Sn Hf

Ti #S #S S #A A A A A A A A A
V #S #S #S S A S S S A S S S A A A A
Cr #S #S #S #S #A #A #S S #S #S #S #S #A #S S
Co #S S S S A S S S S S S S A S S
In S S #S S S #S #S S A #A A #A
ber (A5), electronegativity (by Pauling), chemical
potential of Miedema, temperatures of melting and
boiling, standard entropy, atomization enthalpy, ther-
mal conductivity, molar heat capacity (I10), etc.—in
total, 123 values for each system A–B–C– X (compo-
sition AIBIIICIVX4) and 96 values of each system A–B–
C–S (composition AIIBIIICIIIS4). The values of these
properties were obtained from our developed database
Elements (http://phases.imet-db.ru/elements).

RESULTS AND DISCUSSION

Predicting Chalcospinels of Composition
AIBIIICIVX4 (X = S or Se)

Analysis of the learning sample using the package
[38] showed that functions S5(B)*S5(X) and
M2(B)/A5(A) possess the highest separating capabil-
ity, where M2(B) is the number of element B by Men-
deleev–Pettifor (H t-d start right). However, analysis
of location of points on projection (whose coordinates
are the aforementioned most significant algebraic
functions) shows that domains corresponding to chal-
cospinels, compounds with crystal structures different
from spinel structure, and systems without formation
of compounds of the predicted composition strongly
intersect. Nevertheless, addition of the values of these
algebraic functions to the initial properties of chemical
elements allowed achieving 96% accuracy of test predic-
tion using machine learning programs based on methods
of “binary decision trees,” “linear machine,” and “for-
mation of logical regularities” [39] and applied majority
vote for making collective decisions.

Criteria formed during machine learning allowed
predicting new chalcospinels. Table 2 presents a part
of the obtained results. The following notation is
accepted hereinafter: S—prediction of spinels; A—
prediction of compounds with crystal structure differ-
ent from spinel; empty cells—undefined result. Sign
“#” marks earlier studied systems, information about
which is used when forming multidimensional criteria.
All the predictions are given for room temperature and
atmospheric pressure.
INORGANIC MATERIALS: APPLIED RESEARCH  Vol.
Predicting sulfospinels of composition AIIBIIICIIIS4

Analysis of projections of points in coordinates of
algebraic functions of properties of chemical elements
(E6(A)*E7(B) and I10(A)+I10(B)) which are the
most important for distinguishing the domain of sta-
bility for spinel structure found using package [38]
showed that they are insufficient for good separation
of compounds of different classes. Moreover, addition
of these functions to the initial parameters of chemical
elements did not change the accuracy of test prediction
(81%). Thus, only the initial properties of elements were
used for formation of classification criterion.

New chalcospinels were predicted using an ensem-
ble of machine learning programs [39] based on meth-
ods of support vector machine, Fischer linear discrim-
inant, k-nearest neighbors, learning of multilayer per-
ceptron, and neural network using the complex
committee method—averaging. Table 3 presents a part
of the obtained prediction results. For notation, see
Table 2.

Predicting the Parameter of Crystal Lattice 
of Chalcospinels

Presently, the parameters of the crystal lattice of
compounds is predicted using machine learning
methods [41–43].

Estimation of the parameters of the crystal lattice
of the predicted chalcospinels included several stages:

(1) Selection of the initial set of properties of ele-
ments for formation of learning samples.

The learning sample with information about
known chalcospinels is represented in the form of a
matrix whose rows include the set of parameter values
of elements in a specific substance with indication of
the value of parameter “a” of cubic crystal lattice of
spinels. The set of properties of elements included
dimensional factors (covalent radius (by Bokii-Belov),
pseudopotential radius (by Zunger), ionic radius (by
Shannon-Prewitt), distances to core and valence elec-
trons (by Schubert), electronegativity (by Pauling),
temperatures of melting and boiling, first, second, and
third ionization potentials of atoms—in total, 11 values
 12  No. 2  2021
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Table 3. Prediction of a spinel crystal structure type in compounds of composition AIIBIIICIIIS4

C Ga In

A B Mn Fe Co Ni Cu Zn Cd Hg Mn Fe Co Ni Cu Zn Cd Hg

Cr A A A A S #S #S #S #S #S #S #S S #S #S S
Mn A A A S A S S S S S S S S S
Co S S S S S S S S S S S S
Rh S S S S S S S S S S S S S S S S
Ir S S S S S S S S S S S S S S S S
of properties for each element in composition of chal-
cospinel. This stage resulted in two learning samples
for further computer-aided analysis for various com-
positions: AIBIIICIVX4 (X = S or Se) (19 examples) and
AIIBIIICIIIS4 (53 examples, including information
about spinels of composition ).

(2) Computer-aided analysis of the selected infor-
mation with further selection of the best algorithms.

Values of the parameters of the crystal lattice were
predicted using the widespread software package
scikit-learn [44] as well as multilayer methods of
machine learning [45]. Prediction accuracy was deter-
mined by the results of computation of mean absolute
error (MAE) and mean squared error (MSE) (in
cross-validation regime leave-one-out).

For illustrating the possibilities of the used meth-
ods (with the least values of errors), Table 4 presents
the results of prediction for the parameter of the crys-
tal lattice of the studied chalcospinels of composition
AIBIIICIVX4. The best results were obtained using ridge
regression, Bayes ridge regression [46], and regression
of automatic relevance determination [47], as well as a
multilayer approach representing a combination of

II III
2 4A B S
INORGANIC MATE

Fig. 1. Comparison of the predicted values of the crystal
lattice parameter of chalcospinels with composition
AIBIIICIVX4 with experimental data using multilevel pre-
diction (“random forest” + “elastic net”).
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machine learning methods using algorithms of ran-
dom forest construction [48] and elastic net [49].
Figure 1 shows the results of prediction using the latter
combined approach graphically. It is necessary to note
that such a multilayer approach provided the least
errors of prediction (Table 4). Table 5 presents results
of prediction using this method.

The results of prediction of the lattice parameter of
sulfospinels of composition AIIBIIICIIIS4 presented in
Table 6 and graphical illustration of these results (Fig. 2)
allow selecting a multilayer method which represents a
combination of machine learning methods using
“random forest” and “elastic net” for predicting
unknown values of parameter “a” (Table 7).

CONCLUSIONS
The efficiency of using machine learning when

designing new inorganic substances was shown.
These methods provided successful prediction of

not yet obtained chalcospinels of composition ABCX4
and estimation of values of parameter “a” of their
crystal lattice. Only values of properties of chemical
elements were used for prediction. Computations were
RIALS: APPLIED RESEARCH  Vol. 12  No. 2  2021

Fig. 2. Comparison of the predicted values of the crystal
lattice parameter of chalcospinels with composition
AIIBIIICIIIX4 with experimental data using multilevel pre-
diction (“random forest” + “elastic net”).
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Table 4. The results of the examination prediction of the crystal lattice parameter of chalcospinels with composition
AIBIIICIVX4

Composition

MAE 0.10 0.10 0.11 0.09

MSE 0.02 0.02 0.02 0.01

method Ridge Regression
Bayesian Ridge

Regression
ARD Regression

Random Forest +

Elastic Net

a, Å experiment a, Å prediction

LiInSnS4 10.629 10.63 10.63 10.61 10.63

CuVTiS4 9.902 9.91 9.91 9.91 9.91

CuCrSnS4 10.2 10.17 10.17 10.17 10.21

CuCrTiS4 9.9 9.90 9.90 9.90 9.89

CuCoTiS4 9.744 9.75 9.75 9.75 9.750

CuTiZrS4 10.236 10.22 10.22 10.21 10.24

CuTiSnS4 10.244 10.25 10.25 10.24 10.24

CuVZrS4 10.209 10.15 10.15 10.15 10.19

CuVSnS4 10.124 10.19 10.19 10.19 10.14

CuCrZrS4 10.1 10.13 10.13 10.14 10.11

CuCrHfS4 10.1 10.10 10.10 10.10 10.10

CuInSnS4 10.4938 10.48 10.48 10.49 10.48

CuCrSnSe4 10.7 10.67 10.67 10.68 10.71

CuCrTiSe4 10.4 10.40 10.40 10.40 10.40

CuCrZrSe4 10.6 10.64 10.64 10.64 10.60

CuCrHfSe4 10.6 10.60 10.60 10.60 10.60

AgCrSnS4 10.44 10.44 10.44 10.44 10.43

AgInSnS4 10.74 10.75 10.75 10.76 10.75

AgCrSnSe4 10.97 10.95 10.95 10.95 10.96

Table 5. Prediction of the crystal lattice parameter of chalcospinels with composition AIBIIICIVX4

Composition a, Å Composition a, Å Composition a, Å

CuInTiS4 10.10 AgCoZrS4 10.19 CuCoZrSe4 10.46

CuCoZrS4 9.99 AgInZrS4 10.62 CuVSnSe4 10.48

CuInZrS4 10.41 AgVSnS4 10.40 CuCoSnSe4 10.43

CuCoSnS4 9.95 AgCoSnS4 10.22 CuVHfSe4 10.52

CuTiHfS4 10.23 AgVHfS4 10.37 CuCoHfSe4 10.46

CuVHfS4 10.17 AgCrHfS4 10.25 AgCoZrSe4 10.71

CuCoHfS4 9.98 AgCoHfS4 10.17 AgCrHfSe4 10.79

CuInHfS4 10.39 AgInHfS4 10.59 AgCoHfSe4 10.70

AgInTiS4 10.35 CuCoTiSe4 10.26

AgVZrS4 10.40 CuVZrSe4 10.53
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Table 6. The results of the examination prediction of the crystal lattice parameter of chalcospinels with composition
AIIBIIICIIIS4

Composition

MAE 0.18 0.17 0.18 0.10

MSE 0.05 0.04 0.05 0.02

method Ridge Regression
Bayesian Ridge 

Regression
ARD Regression

Random Forest + 

Elastic Net

a, Å experiment a, Å prediction

MnCrInS4 10.4297 10.42 10.42 10.42 10.41

FeCrInS4 10.323 10.30 10.30 10.30 10.31

CoCrInS4 10.31 10.26 10.25 10.29 10.31

NiCrInS4 10.22 10.15 10.16 10.20 10.31

CdCrGaS4 10.1784 10.22 10.24 10.24 10.18

CuCoRhS4 9.64 9.65 9.66 9.67 9.66

CdSbInS4 10.8 10.78 10.77 10.783 10.77

CdCrInS4 10.54 10.51 10.51 10.49 10.44

Table 7. Prediction of the crystal lattice parameter of chalcospinels with composition AIIBIIICIIIS4

Composition a, Å Composition a, Å Composition a, Å

CuCrVS4 9.92 ZnRhGaS4 9.96 NiRhInS4 10.22

CuCrRhS4 9.90 ZnIrGaS4 9.96 NiIrInS4 10.23

ZnCrGaS4 10.12 CdMnGaS4 10.19 CuCrInS4 10.35

HgCrGaS4 10.19 CdCoGaS4 9.94 CuMnInS4 10.37

ZnCrInS4 10.40 CdRhGaS4 10.02 CuCoInS4 10.22

MnRhGaS4 9.91 CdIrGaS4 10.02 CuRhInS4 10.23

MnIrGaS4 9.92 HgMnGaS4 10.18 CuIrInS4 10.24

FeCoGaS4 9.78 HgCoGaS4 9.94 ZnMnInS4 10.41

FeRhGaS4 9.89 HgRhGaS4 10.03 ZnCoInS4 10.27

FeIrGaS4 9.90 HgIrGaS4 10.03 ZnRhInS4 10.28

CoRhGaS4 9.83 MnRhInS4 10.29 ZnIrInS4 10.29

CoIrGaS4 9.84 MnIrInS4 10.33 CdMnInS4 10.46

NiCoGaS4 9.75 FeMnInS4 10.33 CdCoInS4 10.32

NiRhGaS4 9.85 FeCoInS4 10.21 CdRhInS4 10.32

NiIrGaS4 9.86 FeRhInS4 10.21 CdIrInS4 10.36

CuCrGaS4 9.97 FeIrInS4 10.24 HgCrInS4 10.43

CuMnGaS4 9.93 CoMnInS4 10.33 HgMnInS4 10.44

CuCoGaS4 9.73 CoRhInS4 10.21 HgCoInS4 10.30

CuRhGaS4 9.83 CoIrInS4 10.23 HgRhInS4 10.31

CuIrGaS4 9.84 NiMnInS4 10.34 HgIrInS4 10.34

ZnCoGaS4 9.88 NiCoInS4 10.22
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carried out with application of an information-ana-
lytical system based on methods of machine learning
and software packages of the scikit-learn system.

According to data of test prediction using cross-
validation, the prediction accuracy of new chalcospi-
nels was not lower than 80% and that of the parameter
of their crystal lattice was ±0.1 Å.

The efficiency of using multilevel methods of
machine learning for predicting physical properties of
substances was shown.

The predicted chalcospinels are promising in the
search for new materials to create magneto-optical
elements of memory and sensors, as well as anodes in
sodium-ion batteries.
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