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Abstract⎯The prediction of new compounds having such composition as BIIIB'VO6 was carried out, the
type of distortion of their perovskite-like lattice and the space group were predicted, and the crystal lattice
parameters of the predicted compounds were estimated. For the prediction, only the property values of the
chemical elements were used. The programs based on machine learning algorithms for different variants of
neural networks, a linear machine, the formation of logical regularities, k-nearest neighbors, and support
vector machine showed the best results when predicting the type of distortion of a perovskite-like lattice.
When evaluating the lattice parameters, programs based on algorithms for orthogonal matching pursuit and
automatic relevance determination regression were the most accurate methods. The prediction accuracy for
the type of distortion of perovskite-like lattice was no less than 74%. The accuracy of estimating the lattice
linear parameters was within ±0.0120–0.8264 Å, and the accuracy of angles β for the monoclinic distortion
of the lattice amounted to ±0.08°–0.74°. The calculations were carried out using systems based on machine
learning methods. To evaluate the prediction accuracy, an examination recognition in the cross-validation
mode was used for the compounds included in the sample for machine learning. The predicted compounds
are promising for searching for novel magnetic, thermoelectric, and dielectric materials.
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INTRODUCTION
Perovskite-like compounds are among the most

studied inorganic substances. This is due to their dif-
ferent physical and chemical properties: magnetic [1–
4], thermoelectric [4–6], dielectric [7, 8], catalytic [8,
9], etc. They can also be used as electrode materials for
fuel cells [10, 11]. Some perovskites simultaneously
combine different properties [12, 13], which expands
the scope of their application.

The crystal structure of double perovskites, the
compounds that have composition A2BB'O6, in many

cases differs from the ideal cubic structure inherent in
perovskite. The problem of predicting the crystal
structure of double perovskites is to a significant extent
connected with determining the type of distortions of
the structure under preset external conditions. Most of
the criteria developed to solve this problem take into
account the size of ions. Let us consider the most pop-
ular of these criteria.

The classical criterion for determining the type of
perovskite structure distortion is represented by toler-
ance factor t. In the case of double perovskites
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A2BB'O6, this parameter can be written in the follow-
ing form [14]:

where rA is the ionic radius for coordination number
12, and rB, rB', and rO are the ionic radii for coordina-
tion number 6. According to this criterion, for an ideal
cubic structure, t is close to 1. At t < 0.77, other struc-
tures are formed (such as ilmenite, corundum, etc.). If
0.77 < t < 1, rhombic, tetragonal, monoclinic, or
rhombohedral distortions are can occur. At t > 1, a
hexagonal distortion of the ideal perovskite structure is
observed.

All of the mentioned values of the tolerance factor
are very approximate and different publications indi-
cate different ranges for different types of distortions
that often overlap. Thus, the tolerance factor can
hardly be considered as a reliable rule for predicting
possible distortions for the crystal lattice of double
perovskites.

It should be noted that the most common reasons
for a decrease in symmetry can be represented by rota-
tion (tilt) of the chains of BO6 and B'O6 octahedra or
by the distortion of these octahedra, as well as by the
displacement of cations from ideal positions. At the
same time, in most cases, the decrease in symmetry is
associated with a combination of several reasons.
Rotation and tilt of the octahedron chains are respon-
sible for the most common type of distortion in double
perovskites.

It was shown in [15] that 23 different systems of
octahedron tilt are possible in the perovskite structure.
Later, the authors of [16] on the basis of group-theo-
retical analysis showed that only 15 such tilt systems
are nonequivalent, and possible space groups were
derived depending on a particular tilt system of the
octahedral framework. On the basis of the above-
mentioned publications [15, 16], the authors of [17]
developed a SPuDS (Structure Prediction Diagnostic
Software) software system [17] designed to predict the
type of perovskite structure distortion and to estimate
the parameters of the crystal structure of ABX3 per-
ovskites.

For the calculations, a value of the cation-anionic
interaction was used, in turn, the equation for the cal-
culation of which includes the cation-anion distance,
as well as an empirically chosen constant and a vari-
able. It should be noted that the need to select the lat-
ter two components of the equation significantly
reduces the efficiency of the proposed method. Then,
using the obtained value of the cation-anionic interac-
tion, a global instability index of was calculated. The
latter was minimized by changing the tilt of octahedra
(and the position of the A cation).
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Then, the authors searched for the crystal structure
that corresponds to the minimum value of this
semiempirical instability index. If the calculated index
did not exceed 0.1, then the structure was considered
stable. Above 0.2, the structure was referred to as
unstable. The lattice parameters could be calculated
on the basis of the B–O distance and the tilt angle of
the octahedra. The authors of [18] used the SPuDS
system for compounds having such composition as
A2BB'O6.

It should be noted that the tilt and distortion of
octahedra, as well as the displacement of cations from
the ideal positions of the cubic perovskite, do not
cover all the reasons for the distortion of the ideal
cubic perovskite structure. Other factors are possible,
too, for example, Jahn–Teller effect, changing
valence, the presence of vacancies, etc.

It is clear that neither the tolerance factor nor the
method underlying SPuDS can completely take into
account all these factors. Therefore, in recent years,
researchers have paid attention to the methods of
machine learning, which makes it possible to find
complex regularities linking the properties of per-
ovskites with the parameters of chemical elements that
compose the compound on the basis of the analysis of
information concerning already known A2BB'O6 com-
pounds [19–25].

Namely machine learning methods have made it
possible not only to predict new double perovskites but
also to estimate some of their properties, for example,
formation energy [19] and thermodynamic stability
[21], crystal lattice parameters [20, 22], band gap [23],
and octahedral tilt [24]. The distinctive feature of the
approach to predicting novel inorganic compounds
based on machine learning methods consists in
including a wide set of the properties of chemical ele-
ments in the sought dependencies, rather than only
dimensional parameters and data on the charge distri-
bution.

In most applications of machine learning methods,
this provides an increase in the accuracy of predic-
tions. Since the number of known double perovskites
is quite large, a significant confinement such as the
representativeness of the sample for machine learning
is removed when using these methods. It should be
noted that, when predicting new inorganic com-
pounds, only the properties of chemical elements are
used.

CALCULATION METHODS
The first predictions for not yet synthesized ABO3

perovskites were obtained in our investigations using
machine learning methods in the middle of the 1970s
[26]. The comparison of our results with new experi-
mental data has shown that the prediction accuracy
of the formation of compounds having this composi-
tion amounted to 90%, whereas for the structure of
RIALS: APPLIED RESEARCH  Vol. 13  No. 2  2022



PREDICTION OF SPACE GROUPS 279
cubic perovskite the prediction accuracy amounted
to 85% [27].

This work is aimed at improving the prediction
accuracy for the crystal structure type of BIIIB'VO6
compounds owing to using the ensembles of machine
learning algorithms [28].

The fact is that earlier only one of these methods
was used in predicting; for example, in [19, 21], there
were different variants for training a random forest.
Even in those publications, whose authors used differ-
ent algorithms [24, 25], the final decision according to
the results of prediction was made on the basis of a
simple vote for most of the predictions using different
methods.

In this work, we used collective decision-making
methods for the predicting results based on special
heuristics [28], the programs of which are included in
our developed information-analytical system (IAS) for
designing inorganic compounds [29]. At first, differ-
ent machine learning algorithms included in the IAS
were independently applied. Then, an optimal collec-
tive solution was automatically found using special
corrector methods [28].

The development of such an approach was dictated
by the impossibility of predicting in advance which
machine learning algorithm would be most efficient in
solving a specific chemical problem. The use of the
ensembles of algorithms makes it possible to compen-
sate for possible disadvantages of using one algorithm
by using the advantages of other ones. As our long-
term experience shows, the ensembles of machine
learning algorithms in most cases provide an increase
the predicting accuracy when solving chemical prob-
lems [30, 31].

The machine learning and predicting procedure
includes several stages.

1. At the first stage, a selection of the examples of
known compounds for machine learning is performed.
The source of information is represented by the inte-
grated database system (DB) of the Baikov Institute of
Metallurgy and Materials Science concerning the
properties of more than 85 000 inorganic compounds
(http://www.imet-db.ru/), including information on
more than 750 compounds having BIIIB'VO6 com-
position.

The selection of examples is the most difficult,
time-consuming, and nonformalized task, the solu-
tion of which determines to a significant extent the
accuracy of obtained predictions. In the present study,
the complexity of the training sample formation was
associated with extremely contradictory information
on the type of distortion of an ideal perovskite crystal
structure under normal conditions for most com-
pounds.

For example, for compound Sr2YSbO6, different
systems are indicated at a room temperature: mono-

II
2A

II
2A
INORGANIC MATERIALS: APPLIED RESEARCH  Vol.
clinic (space group P21/n [32]) and orthorhombic
[33]. According to different researchers, double per-
ovskite Ba2SmNbO6 exhibits a tetragonal distortion
type [34] (space group I4/m [35]) and a monoclinic
distortion type (space groups P21/n [36] or I2/m [37]).

One of the ways to resolve the ambiguities and to
reduce the amount of analyzed information consists in
the use special systems we have developed for deter-
mining anomalous objects, which are based on the
idea of compactness of the classes of inorganic sub-
stances in the multidimensional space of the parame-
ters of chemical elements [38, 39], which is a conse-
quence of the periodic law.

In other words, substances that include a set of ele-
ments close in the values of parameters should be close
to each other in crystal structure too. These software
systems significantly reduce the time of the analysis of
experimental information by means of pointing out to
the expert those substances whose published type of
crystal structure distortion does not fall into its own
class.

For example, one of the methods for determining
substances whose set of component values differs from
the sets of such values for substances with the same
space group is reduced to determining the magnitude
of the examination recognition error when adding
information on the evaluated substance to the training
set [38]. If the error increases by more than the speci-
fied value, then this object is considered anomalous. It
is natural that the final decision concerning the crystal
structure of the falling-out substance is made by an
expert in the field of the subject.

2. The selection of the parameters of chemical ele-
ments for including them in the desired regularity that
makes it possible to predict the type of crystal struc-
ture for compounds is of great importance. The pri-
mary selection is carried out on the basis of physico-
chemical concepts of the nature of the substances
under study and using a database of the properties of
elements (http://phases.imet-db.ru/elements).

In addition, a special program generates algebraic
functions of the parameters of elements using a set of
elementary algebraic operations on the values of
parameters having the same type in physical meaning
and dimension. Further, using the program [40]
included in the IAS, the importance for the classifica-
tion of the initial properties of the elements and for the
classification of generated functions is estimated.

Using the visualization system, one can show any
projection of points onto a plane the coordinates of
which are any pair of chosen parameters of the ele-
ments or their functions, which facilitates the interpre-
tation of the results.

The result of these two stages represents a matrix
(training sample), each row of which corresponds to a
set of values of the properties of the elements that form
the experimentally investigated BIIIB'VO6 com-II
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Table 1. Results of importance evaluation for classifying the parameters of elements and choosing the most accurate
machine learning methods

Task
The most important 

parameters of the 
elements

Prediction accuracy 
using properties of 
elements and the 
most important 
parameters, %

Prediction accuracy 
using only the 
properties of 
elements, %

Selected machine 
learning methods

Multiclass predicting A2(B)/M11(A);
A4(B′)+M7(B);
A3(B′)/M7(B)

74 74 (linear machine, logical 
regularities formation, 
k-nearest neighbors, 
support vector 
machine)—majority vote

Prediction of compounds 
with space group P63/mmc

I8(A)/I8(B′) 100 96 (estimates calculation 
algorithms, neural net-
work training, k-nearest 
neighbors)—major-ity 
vote

Prediction of compounds 
with space group Pbnm

A4(B′)/A3(A) 97 99 (linear machine, multi-
level perceptron, neural 
network training, sup-
port vector machine)—
convex stabilizer

Prediction of compounds 
with space group I2/m

I11(B)*I11(B′);
I10(A)/I10(B)

99 99 (neural network training, 
k-nearest neighbors, 
support vector 
machine)—convex stabi-
lizer

Prediction of compounds 
with space group I4/m

E8(A)/E8(B′) 97 94 (linear machine, k-near-
est neighbors, neural 
network training)—aver-
aging

Prediction of compounds 
with space group Fm(–)3m

A2(B′)+M7(B) 85 83 (linear machine, neural 
network training, k-near-
est neighbors, support 
vector machine)—gener-
alized polynomial cor-
rector

Prediction of compounds 
with space group P21/n

A2(B′)/M6(A);
E7(A)-E7(B′);
E6(B)*E7(B')

91 93 (linear machine, k-near-
est neighbors, neural 
network training, sup-
port vector machine) - 
averaging

Prediction of compounds 
with space group Pm(–)3m

A2(A)/A4(B′) 94 98 (neural network training, 
k-nearest neighbors, 
support vector 
machine)—clustering 
and selection

Prediction of compounds 
with space group R(–)3

A3(B′)/M11(A) 94 96 (multilevel perceptron, 
k-nearest neighbors, 
neural network training, 
support vector 
machine)—the Woods 
dynamic method
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Table 2. Results of accuracy evaluation for predicting the crystal lattice parameters of compounds BIIIB'VO6

Task Space group 
(Sp.gr.), parameter Algorithm

Determination 
coefficient R2

Mean absolute error, 
MAE

Mean square error, 
MSE

1 I2/m, a Elastic Net 0.95 0.0251 0.0018

2 I2/m, b Orthogonal Matching Pursuit 0.96 0.0486 0.0364

3 I2/m, c Linear Regression 1.00 0.0677 0.0235

4 I2/m, β ARD Regression 0.99 0.7359 3.5439

5 I4/m, a Ridge 1.00 0.0120 0.0005

6 I4/m, c Random Forest 0.99 0.0163 0.0007

7 Fm(–)3m, a ARD Regression 0.81 0.0725 0.0520

8 P21/n, a ARD Regression 0.98 0.0181 0.0019

9 P21/n, b Convex with loop reduction 0.93 0.0234 0.0013

10 P21/n, c Ridge 0.66 0.0438 0.0434

11 P21/n, β SAND 0.78 0.0794 0.0335

12 P63/mmc, a ARD Regression 0.99 0.0201 0.0014

13 P63/mmc, c ARD Regression 1.00 0.8264 3.5610

14 Pbnm, a ARD Regression 0.99 0.1256 0.0562

15 Pbnm, b Orthogonal Matching Pursuit 0.97 0.1758 0.1934

16 Pbnm, c Orthogonal Matching Pursuit 0.97 0.3931 0.5264

17 Pm(–)3m, a Orthogonal Matching Pursuit 0.93 0.0230 0.0076

18 R(–)3, a SAND 1.00 0.7839 2.4921

19 R(–)3, c ARD Regression 1.00 0.7411 1.6414

II
2A
pound with the designation of a space group to which
this compound belongs.

3. In order to predict novel double perovskites, we
used two systems that we developed. The first infor-
mation analytical system [29] was used to predict the
type of distortion of a crystal structure (space group).
The second system ParlS (Parameters of Inorganic
Substances) [41] was used to estimate the crystal lat-
tice parameters of double perovskites. The IAS data
analysis subsystem currently includes 15 machine
learning programs and nine programs for collective
decision making [29, 30].

The data analysis subsystem of the ParIS system
includes 11 machine learning programs [41]. In the
course of machine learning, the most accurate algo-
rithms were chosen, which were then used for search-
ing for regularities and for predicting. To assess the
accuracy (the ratio of the number of substances for
which the assigned classes have been correctly recog-
nized to the total number of recognized substances), in
the IAS, we used such a widespread procedure as
examination recognition with cross-validation on the
material of the training sample. This procedure is
described in detail by the authors of [30].
INORGANIC MATERIALS: APPLIED RESEARCH  Vol.
When making a collective decision in the IAS, the
most accurate algorithm was also chosen too, for
which we used the examination recognition of a set
amount of substances randomly chosen from training
samples and not used in machine learning (at the final
stage of predicting, the reference cases were returned
to the training sample).

The subsystem for assessing the quality of learning
in the ParIS system makes it possible to estimate the
mean absolute error (MAE) and mean squared error
(MSE) with cross-validation in the Leave-One-Out
Cross-Validation (LOOCV) mode, the coefficient of
determination R2, etc., as well as to construct a dia-
gram of the deviations of the calculated values of the
parameters from the experimental ones for the sub-
stances the information concerning which was used in
machine learning.

4. The prediction was carried out by means of spe-
cial IAS and ParIS subsystems using only the values of
the properties of the elements composing the pre-
dicted substance. First of all, using the IAS, the pre-
diction of belonging to the most common space
groups was carried out at room temperature and at
atmospheric pressure. This task was divided in two.
 13  No. 2  2022
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Fig. 1. Diagrams of deviations of the predicted lattice parameters from the experimental ones in tasks 1–10 (see the list of tasks
in Table 2).
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Fig. 2. Diagrams of deviations of the predicted lattice parameters from the experimental ones in tasks 11–19 (see the list of tasks
in Table 2).
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Initially, for the compounds having composition

BIIIB'VO6, a multiclass prediction of belonging to
nine of the classes was carried out: compounds with
the structure of an ideal cubic perovskite (space group
Pm(–)3m), compounds with space groups P21/n,
Fm(–)3m, I2/m, Pbnm, I4/m, R(–)3, P63/mmc, and
compounds with a structure different from the one
given above; and then a sequential separation of

BIIIB'VO6 compounds into two classes was per-
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formed, for example, target class 1—the phases with
the structure of ideal cubic perovskite, and class 2—
the compounds with a structure different from ideal
cubic perovskite.

The final result of prediction was formed on the
basis of comparing the predictions obtained when ful-
filling all the tasks. If the results contradicted each
other, then the prediction was considered uncertain.
Then, using the ParIS system for the predicted com-
 13  No. 2  2022
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Table 3. Prediction of parameter a for the cubic crystal lattice of new BIIIB'VO6 compounds

Composition a, Å Composition a, Å Composition a, Å

Sp. gr. Fm(–)3m (algorithm ARD Regression)

Ca2AlUO6 7.9030 Sr2PmUO6 8.5299 Ba2PmWO6 8.5261

Ca2ScUO6 8.1164 Sr2TbUO6 8.5152 Ba2PmMoO6 8.4351

Ca2GaUO6 8.0806 Sr2TmUO6 8.4477 Ba2PmUO6 8.7044

Ca2YUO6 8.3583 Sr2BiUO6 8.6795 Ba2GdRuO6 8.3499

Ca2PrUO6 8.4692 Sr2AmUO6 8.6044 Ba2TbRuO6 8.3412

Ca2PmUO6 8.3950 Ba2AlMoO6 7.9431 Ba2TbWO6 8.51144

Ca2GdUO6 8.3890 Ba2AlWO6 8.0341 Ba2HoWO6 8.4857

Ca2TbUO6 8.3803 Ba2AlReO6 7.8691 Ba2TmVO6 8.2003

Ca2DyUO6 8.3573 Ba2AlOsO6 7.9099 Ba2TmWO6 8.4439

Ca2HoUO6 8.3545 Ba2AlUO6 8.2124 Ba2TmUO6 8.6222

Ca2ErUO6 8.3436 Ba2ScVO6 8.0040 Ba2YbVO6 8.1570

Ca2TmUO6 8.3128 Ba2ScWO6 8.2476 Ba2YbWO6 8.4006

Ca2YbUO6 8.2694 Ba2VRuO6 7.9352 Ba2BiUO6 8.8539

Ca2LuUO6 8.2666 Ba2VWO6 8.1055 Ba2AmNbO6 8.5534

Ca2AmUO6 8.4695 Ba2VUO6 8.2837 Ba2AmMoO6 8.5096

Sr2AlMoO6 7.7686 Ba2CrUO6 8.2579 Ba2AmSbO6 8.5015

Sr2AlWO6 7.8596 Ba2FeVO6 7.9140 Ba2AmWO6 8.6006

Sr2AlOsO6 7.7354 Ba2FeWO6 8.1576 Ba2AmOsO6 8.4765

Sr2AlUO6 8.0379 Ba2GaReO6 8.0467 Ba2AmUO6 8.7789

Sr2ScUO6 8.2513 Ba2GaOsO6 8.0875 Pb2ScOsO6 8.2317

Sr2VWO6 7.9310 Ba2GaUO6 8.3900 Pb2ScUO6 8.5342

Sr2VUO6 8.1092 Ba2YWO6 8.4894 Pb2RhNbO6 8.3336

Sr2MnWO6 8.0465 Ba2RhVO6 8.0290 Pb2RhMoO6 8.2898

Sr2MnOsO6 7.9223 Ba2RhMoO6 8.1815 Pb2RhSbO6 8.2818

Sr2FeWO6 7.9831 Ba2RhWO6 8.2725 Pb2RhBiO6 8.4624

Sr2GaWO6 8.0372 Ba2RhOsO6 8.1483 Pb2DyUO6 8.7750

Sr2GaUO6 8.2155 Ba2InWO6 8.3499 Pb2HoUO6 8.7722

Sr2YUO6 8.4932 Ba2LaWO6 8.5879 Pb2ErUO6 8.7613

Sr2RhMoO6 8.0070 Ba2PrUO6 8.7786 Pb2TmUO6 8.7305

Sr2RhRuO6 7.9278 Ba2PmMoO6 8.4351 Pb2LuUO6 8.6844

Sr2RhWO6 8.0980 Ba2PmRuO6 8.3559 Pb2AmUO6 8.8872

Sr2RhOsO6 7.9739 Ba2PmSbO6 8.4270

Sp. gr. Pm(–)3m (algorithm Orthogonal Matching Pursuit)

Ba2VBiO6 4.3161 Pb2VIrO6 3.9191 Pb2RhWO6 4.0431

Ba2MnBiO6 4.3068 Pb2CrMoO6 3.9810 Pb2InWO6 4.0573
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Ba2FeBiO6 4.3309 Pb2CrRuO6 3.9102 Pb2InReO6 3.9909

Ba2GaVO6 3.8673 Pb2CrWO6 3.9975 Pb2InOsO6 3.9843

Ba2GaMoO6 3.9691 Pb2CrOsO6 3.9245 Pb2InIrO6 3.9771

Ba2GaWO6 3.9856 Pb2CrIrO6 3.9173 Pb2InBiO6 4.3587

Pb2AlSbO6 3.9782 Pb2MnMoO6 3.9734 Pb2LaRuO6 4.0798

Pb2AlBiO6 4.2428 Pb2MnRuO6 3.9027 Pb2PrRuO6 4.0145

Pb2VMoO6 3.9827 Pb2FeRuO6 3.9268 Pb2NdRuO6 4.0347

Pb2VRuO6 3.9120 Pb2GaMoO6 3.9536 Pb2BiSbO6 4.2570

Pb2VReO6 3.9328 Pb2GaIrO6 3.8900 Pb2BiReO6 4.1538

Pb2VOsO6 3.9262 Pb2GaBiO6 4.2715 Pb2BiOsO6 4.1473

Composition a, Å Composition a, Å Composition a, Å

Table 3. (Contd.)
Table 4. Prediction of the parameters for the tetragonal (or hexagonal) crystal lattice of new BIIIB'VO6 compounds

Composition

a, Å c, Å

Composition

a, Å c, Å

Sp. gr. I4/m (algorithm 
Ridge)

Sp. gr. I4/m (algorithm 
Random Forest)

Sp. gr. R(–)3 
(algorithm 

SAND)

Sp. gr. R(–)3 
(algorithm ARD 

Regression)

Sr2GaMoO6 5.5927 7.8916 Ba2BiMoO6 6.0390 14.7809

Sp. gr. P63/mmc
(algorithm 

ARD Regression)

Sp. gr. P63/mmc
(algorithm ARD

Regression)

Ba2BiRuO6 6.0401 14.7499

Ba2VOsO6 5.8344 17.1422 Ba2BiWO6 6.0430 14.7879

Ba2VIrO6 5.8418 17.1460 Ba2BiReO6 6.0410 14.7609

Ba2CrVO6 5.7491 18.7279 Ba2BiOsO6 6.0433 14.7568

II
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pounds, the values of the crystal lattice parameters
were estimated.

CALCULATION PROCEDURE

After a peer review, information was included in the
selection for computer analysis concerning 216 com-
pounds having a composition of BIIIB'VO6 with a
monoclinic structure (space group P21/n), 179 com-
pounds with a cubic structure (space group Fm(–)3m),
27 compounds with a monoclinic structure (space
group I2/m), 20 compounds with an ideal cubic per-
ovskite structure (space group Pm(–)3m), 19 com-
pounds with an orthorhombic structure (space group
Pbnm), 17 compounds with a tetragonal structure
(space group I4/m), 13 compounds with a rhombohe-
dral structure (space group R(–)3), 10 compounds
with a hexagonal structure (space group P63/mmc),

II
2A
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and 15 compounds with crystal structures other than
those listed above, under normal conditions.

A significant difference in the size of classes (the
number of examples of compounds with space groups
P21/n and Fm(–)3m is an order of magnitude greater
than the number of the majority of compounds with
other space groups) could result in lower predictive
accuracy for compounds belonging to small classes.

The initial set of parameters for predicting the
space group included the following properties of
chemical elements A, B, and B': pseudopotential
orbital radius (according to Zunger), ionic radius
(according to Shannon), distances to internal and
valence electrons (according to Schubert), ionization
energies for first, second, and third electrons (E5–
E7), the numbers (according to Mendeleev–Pettifor)
(M1–M11 and A1–A4), quantum number, electro-
negativity (according to Pauling), Miedema chemical
potential (E8), melting and boiling points, standard
 13  No. 2  2022
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Table 5. Prediction of the parameters for the monoclinic crystal lattice (space group P21/n) of new BIIIB'VO6 com-
pounds

Composition a, Å1 b, Å2 c, Å3 β, deg4 Composition a, Å1 b, Å2 c, Å3 β, deg4

Ca2AlMoO6 5.3719 5.4116 7.5809 89.97 Ca2LaMoO6 5.6370 5.8731 8.0823 90.09
Ca2AlWO6 5.3777 5.4271 7.5174 90.00 Ca2LaWO6 5.6428 5.8886 8.0188 90.03
Ca2AlReO6 5.3538 5.4073 7.5789 89.97 Ca2LaReO6 5.6190 5.8688 8.0803 90.09
Ca2AlOsO6 5.3502 5.3898 7.5403 90.05 Ca2LaOsO6 5.6154 5.8514 8.0417 90.09
Ca2AlIrO6 5.3466 5.3922 7.5448 89.98 Ca2LaIrO6 5.6118 5.8538 8.0462 90.11
Ca2ScMoO6 5.4702 5.6066 7.8717 89.99 Ca2LaBiO6 5.7366 6.0560 8.2512 90.11
Ca2ScRuO6 5.4455 5.5646 7.8609 90.13 Ca2PrVO6 5.5790 5.7735 8.2133 90.11
Ca2ScWO6 5.4760 5.6221 7.8082 89.94 Ca2PrMoO6 5.6126 5.8341 8.1946 90.10
Ca2ScReO6 5.4521 5.6023 7.8697 89.94 Ca2PrWO6 5.6184 5.8496 8.1311 90.13
Ca2ScIrO6 5.4449 5.5872 7.8356 89.95 Ca2PrReO6 5.5945 5.8298 8.1927 90.10
Ca2ScBiO6 5.5697 5.7895 8.0406 90.02 Ca2PrOsO6 5.5909 5.8124 8.1540 90.09
Ca2VSbO6 5.4507 5.5291 7.89310 90.03 Ca2PrIrO6 5.5873 5.8148 8.1586 90.09
Ca2VReO6 5.4077 5.5048 7.8582 90.06 Ca2PrBiO6 5.7121 6.0170 8.3636 90.11
Ca2VBiO6 5.5253 5.6919 8.0290 90.02 Ca2NdVO6 5.5752 5.7670 8.2429 90.09
Ca2CrIrO6 5.3972 5.4665 7.6980 90.04 Ca2NdMoO6 5.6088 5.8276 8.2242 90.19
Ca2CrBiO6 5.5220 5.6687 7.9030 90.02 Ca2NdWO6 5.6146 5.8431 8.1607 90.13
Ca2MnOsO6 5.4163 5.4920 7.6727 90.12 Ca2NdReO6 5.5907 5.8233 8.2223 90.18
Ca2MnBiO6 5.5375 5.6966 7.8822 90.12 Ca2NdOsO6 5.5871 5.8059 8.1836 90.08
Ca2FeWO6 5.4430 5.5292 7.6840 90.05 Ca2NdIrO6 5.5835 5.8083 8.1882 90.08
Ca2GaWO6 5.4169 5.5060 7.6418 90.05 Ca2NdBiO6 5.7083 6.0105 8.3932 89.87
Ca2GaReO6 5.3930 5.4862 7.7034 90.06 Ca2PmVO6 5.5681 5.7550 8.0263 90.06
Ca2GaOsO6 5.3894 5.4688 7.6647 90.05 Ca2PmNbO6 5.6184 5.8555 8.0553 90.06
Ca2GaIrO6 5.3858 5.4712 7.6693 90.0 Ca2PmMoO6 5.6017 5.8156 8.0076 90.18
Ca2GaBiO6 5.5106 5.6734 7.8743 90.00 Ca2PmRuO6 5.5770 5.7736 7.9968 90.05
Ca2YMoO6 5.5574 5.7506 8.0854 90.12 Ca2PmSbO6 5.6267 5.8356 8.0406 89.87
Ca2YWO6 5.5632 5.7660 8.0219 90.09 Ca2PmTaO6 5.6184 5.8694 8.0157 90.06
Ca2YReO6 5.5393 5.7462 8.0834 90.11 Ca2PmWO6 5.6075 5.8310 7.9441 90.12
Ca2YOsO6 5.5357 5.7288 8.0448 90.07 Ca2PmReO6 5.5837 5.8112 8.0057 90.19
Ca2YIrO6 5.5321 5.7312 8.0493 90.13 Ca2PmOsO6 5.5800 5.7938 7.9670 90.05
Ca2YBiO6 5.6569 5.9334 8.2543 89.78 Ca2PmIrO6 5.5764 5.7962 7.9716 90.05
Ca2RhNbO6 5.4593 5.5722 7.9340 90.06 Ca2PmBiO6 5.7012 5.9984 8.1766 89.87
Ca2RhSbO6 5.4675 5.5523 7.9194 90.03 Ca2SmVO6 5.5619 5.7438 8.3538 90.0
Ca2RhTaO6 5.4593 5.5862 7.8944 90.05 Ca2SmMoO6 5.5955 5.8044 8.3351 89.87
Ca2RhBiO6 5.5421 5.7152 8.0553 90.03 Ca2SmWO6 5.6013 5.8199 8.2716 89.91
Ca2InMoO6 5.4992 5.6577 7.9415 90.01 Ca2SmReO6 5.5774 5.8001 8.3332 89.86
Ca2InRuO6 5.4745 5.6157 7.9307 90.06 Ca2SmOsO6 5.5738 5.7826 8.2945 90.02
Ca2InWO6 5.5050 5.6732 7.8780 90.12 Ca2SmIrO6 5.5702 5.7850 8.2991 90.03
Ca2InReO6 5.4811 5.6534 7.9396 90.11 Ca2SmBiO6 5.6950 5.9872 8.5040 90.0
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(1) ARD Regression algorithm, (2) Convex with Loop Reduction algorithm, (3) Ridge algorithm, (4) SAND algorithm.

Ca2IrMoO6 5.4739 5.6383 7.9055 90.07 Ca2EuVO6 5.5581 5.7336 8.1583 90.02
Ca2BiMoO6 5.5987 5.8405 8.1105 89.97 Ca2EuMoO6 5.5917 5.7942 8.1396 90.17
Ca2EuWO6 5.5975 5.8097 8.0761 90.12 Ca2ErReO6 5.5388 5.7369 8.0587 90.15
Ca2EuReO6 5.5736 5.7899 8.1376 90.17 Ca2ErOsO6 5.5352 5.7195 8.0201 90.20
Ca2EuOsO6 5.5700 5.7724 8.0990 89.97 Ca2ErIrO6 5.5316 5.7219 8.0246 90.20
Ca2EuIrO6 5.5664 5.7748 8.1035 90.01 Ca2ErBiO6 5.6564 5.9241 8.2296 89.72
Ca2EuBiO6 5.6912 5.9770 8.3085 89.91 Ca2TmVO6 5.5179 5.6714 8.0797 90.0
Ca2GdMoO6 5.5824 5.7859 8.1187 90.17 Ca2TmMoO6 5.5515 5.7320 8.0610 90.15
Ca2GdWO6 5.5882 5.8013 8.0552 90.21 Ca2TmWO6 5.5573 5.7475 7.9974 90.09
Ca2GdReO6 5.5643 5.7815 8.1168 90.17 Ca2TmReO6 5.5334 5.7276 8.0590 90.15
Ca2GdOsO6 5.5607 5.7641 8.0781 89.97 Ca2TmOsO6 5.5298 5.7102 8.0204 90.10
Ca2GdIrO6 5.5571 5.7665 8.0827 90.08 Ca2TmIrO6 5.5262 5.7126 8.0249 90.23
Ca2GdBiO6 5.6819 5.9687 8.2877 89.91 Ca2TmBiO6 5.6510 5.9148 8.2299 89.82
Ca2TbVO6 5.5410 5.7113 8.1307 90.11 Ca2YbVO6 5.5136 5.6602 8.0789 90.12
Ca2TbMoO6 5.5745 5.7719 8.1120 90.14 Ca2YbMoO6 5.5471 5.7208 8.0601 90.18
Ca2TbSbO6 5.5995 5.7919 8.1449 89.75 Ca2YbWO6 5.5529 5.7363 7.9966 90.12
Ca2TbWO6 5.5803 5.7874 8.0484 90.17 Ca2YbReO6 5.5291 5.7165 8.0582 90.18
Ca2TbReO6 5.5565 5.7676 8.1100 90.14 Ca2YbOsO6 5.5255 5.6991 8.0196 90.10
Ca2TbOsO6 5.5529 5.7501 8.0714 90.05 Ca2YbIrO6 5.5219 5.7015 8.0241 90.19
Ca2TbIrO6 5.5493 5.7525 8.0759 90.10 Ca2YbBiO6 5.6467 5.9037 8.2291 89.75
Ca2TbBiO6 5.6740 5.9548 8.2809 90.04 Ca2LuVO6 5.5054 5.6537 8.0387 90.14
Ca2DyVO6 5.5350 5.7011 8.1004 90.0 Ca2LuMoO6 5.5390 5.7143 8.0200 90.10
Ca2DyMoO6 5.5686 5.7617 8.0816 90.12 Ca2LuWO6 5.5448 5.7298 7.9565 90.09
Ca2DyWO6 5.5744 5.7772 8.0181 90.08 Ca2LuReO6 5.5209 5.7100 8.0180 90.10
Ca2DyReO6 5.5505 5.7574 8.0797 90.10 Ca2LuOsO6 5.5173 5.6926 7.9794 90.05
Ca2DyOsO6 5.5469 5.7399 8.0411 90.12 Ca2LuIrO6 5.5137 5.6950 7.9839 90.19
Ca2DyIrO6 5.5433 5.7423 8.0456 90.12 Ca2LuBiO6 5.6385 5.8972 8.1889 90.09
Ca2DyBiO6 5.6681 5.9445 8.2506 89.75 Ca2AmVO6 5.5799 5.7596 8.1853 90.03
Ca2HoVO6 5.5293 5.6909 8.1081 90.0 Ca2AmNbO6 5.6302 5.8601 8.2143 90.03
Ca2HoMoO6 5.5629 5.7515 8.0893 90.12 Ca2AmMoO6 5.6135 5.8202 8.1666 90.13
Ca2HoWO6 5.5687 5.7670 8.0258 90.08 Ca2AmRuO6 5.5889 5.7782 8.1558 90.13
Ca2HoReO6 5.5448 5.7472 8.0874 90.10 Ca2AmSbO6 5.6385 5.8402 8.1996 89.79
Ca2HoOsO6 5.5412 5.7297 8.0488 90.12 Ca2AmTaO6 5.6302 5.8741 8.1747 90.01
Ca2HoIrO6 5.5376 5.7321 8.0533 90.12 Ca2AmWO6 5.6193 5.8357 8.1031 90.06
Ca2HoBiO6 5.6624 5.9343 8.2583 89.75 Ca2AmReO6 5.5955 5.8159 8.1647 90.08
Ca2ErVO6 5.5233 5.6807 8.0794 90.0 Ca2AmOsO6 5.5919 5.7984 8.1260 90.01
Ca2ErMoO6 5.5569 5.7413 8.0607 90.15 Ca2AmIrO6 5.5883 5.8008 8.1306 90.10
Ca2ErWO6 5.5627 5.7567 7.9972 90.08 Ca2AmBiO6 5.7130 6.0030 8.3356 89.85

Composition a, Å1 b, Å2 c, Å3 β, deg4 Composition a, Å1 b, Å2 c, Å3 β, deg4

Table 5. (Contd.)
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Table 6. Prediction of the parameters for the monoclinic crystal lattice (space group P21/n) of new BIIIB'VO6 compounds
(A = Sr, Ba or Pb)

Composition a, Å1 b, Å2 c, Å3 β, deg4 Composition a, Å1 b, Å2 c, Å3 β, deg4

Sr2ScWO6 5.7061 5.6869 7.9291 90.03 Sr2SmReO6 5.8075 5.8649 8.4541 90.22

Sr2YWO6 5.7933 5.8309 8.1428 90.21 Sr2SmOsO6 5.8039 5.8475 8.4154 90.18

Sr2YBiO6 5.8870 5.9982 8.3752 90.09 Sr2EuWO6 5.8276 5.8745 8.1970 90.20

Sr2InBiO6 5.8288 5.9054 8.2314 89.99 Sr2EuReO6 5.8037 5.8547 8.2585 90.23

Sr2LaMoO6 5.8671 5.9380 8.2032 90.21 Sr2EuOsO6 5.8001 5.8373 8.2199 90.28

Sr2LaWO6 5.8729 5.9535 8.1397 90.51 Sr2GdWO6 5.8183 5.8662 8.1761 90.20

Sr2LaReO6 5.8490 5.9336 8.2012 90.17 Sr2GdOsO6 5.7908 5.8289 8.1990 90.26

Sr2LaOsO6 5.8454 5.9162 8.1626 90.22 Sr2TbMoO6 5.8046 5.8368 8.2329 90.22

Sr2LaIrO6 5.8419 5.9186 8.1671 90.34 Sr2TbRuO6 5.7799 5.7948 8.2221 90.22

Sr2LaBiO6 5.9666 6.1208 8.3721 90.19 Sr2TbWO6 5.8104 5.8522 8.1694 90.20

Sr2PrMoO6 5.8427 5.8990 8.3155 90.22 Sr2TbOsO6 5.7829 5.8150 8.1923 90.20

Sr2PrWO6 5.8485 5.9145 8.252 90.07 Sr2DyVO6 5.7651 5.7659 8.2213 90.15

Sr2PrReO6 5.8246 5.8946 8.3136 90.20 Sr2DyWO6 5.8045 5.8420 8.1390 90.23

Sr2PrOsO6 5.8210 5.8772 8.2749 90.22 Sr2DyOsO6 5.7770 5.8048 8.1620 90.19

Sr2PrIrO6 5.8174 5.8796 8.2795 90.27 Sr2HoVO6 5.7594 5.7557 8.2290 90.15

Sr2NdNbO6 5.8556 5.9324 8.3928 90.19 Sr2HoWO6 5.7987 5.8318 8.1467 90.23

Sr2NdMoO6 5.8389 5.8925 8.3451 90.21 Sr2HoOsO6 5.7713 5.7946 8.1697 90.19

Sr2NdWO6 5.8447 5.9080 8.2816 90.24 Sr2ErOsO6 5.7653 5.7843 8.1410 90.21

Sr2NdReO6 5.8208 5.8881 8.3432 90.22 Sr2TmVO6 5.7480 5.7362 8.2006 90.15

Sr2NdOsO6 5.8172 5.87077 8.3045 90.22 Sr2TmNbO6 5.7982 5.8368 8.2295 90.15

Sr2NdIrO6 5.8136 5.8731 8.3091 90.29 Sr2TmMoO6 5.7816 5.7968 8.1819 90.21

Sr2PmNbO6 5.8485 5.9203 8.1762 90.19 Sr2TmWO6 5.7874 5.8123 8.1183 90.16

Sr2PmMoO6 5.8318 5.8804 8.1285 90.22 Sr2TmOsO6 5.7599 5.7751 8.1413 90.20

Sr2PmRuO6 5.8071 5.8384 8.1177 90.26 Sr2YbVO6 5.7437 5.7251 8.1998 90.12

Sr2PmSbO6 5.8567 5.9004 8.1615 90.29 Sr2YbWO6 5.7830 5.8012 8.1175 90.16

Sr2PmTaO6 5.8485 5.9343 8.1366 90.20 Sr2YbOsO6 5.7556 5.7639 8.1405 90.16

Sr2PmWO6 5.8376 5.8959 8.0650 90.23 Sr2LuMoO6 5.7691 5.7792 8.1409 90.20

Sr2PmReO6 5.8137 5.8761 8.1266 90.23 Sr2LuWO6 5.7748 5.7947 8.0774 90.11

Sr2PmOsO6 5.8101 5.8586 8.0879 90.22 Sr2LuOsO6 5.7474 5.7574 8.1003 90.18

Sr2PmIrO6 5.8065 5.8610 8.0925 90.27 Sr2BiReO6 5.8337 5.9318 8.2293 89.91

Sr2PmBiO6 5.9313 6.0632 8.2975 90.19 Sr2AmVO6 5.8100 5.8244 8.3062 90.19

Sr2SmVO6 5.7920 5.8087 8.4747 90.21 Sr2AmNbO6 5.8603 5.9250 8.3352 90.19

Sr2SmMoO6 5.8256 5.8693 8.4560 90.23 Sr2AmMoO6 5.8436 5.8851 8.2875 90.21

Sr2SmRuO6 5.8009 5.8273 8.4452 90.30 Sr2AmRuO6 5.8189 5.8431 8.2767 90.16

Sr2SmWO6 5.8314 5.8847 8.3925 90.18 Sr2AmSbO6 5.8686 5.9051 8.3205 90.19

Sr2AmTaO6 5.8603 5.9389 8.2956 90.17 Ba2PmReO6 5.9642 5.9863 8.2947 90.04

Sr2AmReO6 5.8255 5.8807 8.2856 90.15 Ba2PmIrO6 5.9570 5.9712 8.2606 90.02
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(1) ARD Regression algorithm, (2) Convex with Loop Reduction algorithm, (3) Ridge algorithm, (4) SAND algorithm.

Sr2AmOsO6 5.8219 5.8633 8.2469 90.16 Ba2AmReO6 5.9760 5.9909 8.4537 90.02

Sr2AmIrO6 5.8183 5.8657 8.2515 90.19 Pb2DyIrO6 6.0769 5.7554 7.7063 90.0

Sr2AmBiO6 5.9431 6.0679 8.4565 90.14 Pb2HoIrO6 6.0712 5.7452 7.7140 90.0

Ba2PrReO6 5.9751 6.0048 8.4817 90.04 Pb2ErIrO6 6.0652 5.7350 7.6854 90.04

Composition a, Å1 b, Å2 c, Å3 β, deg4 Composition a, Å1 b, Å2 c, Å3 β, deg4

Table 6. (Contd.)
Table 7. Prediction of the parameters for the monoclinic crystal lattice (space group I2/m) of new BIIIB'VO6 compounds

Composition a, Å1 b, Å2 c, Å3 β, deg4

Ba2LaVO6 6.0719 5.9619 8.0865 96.14
Ba2PrVO6 6.0405 5.9347 8.0366 95.96
Ba2PmBiO6 6.1496 6.1293 8.6383 90.16
Ba2SmVO6 6.0022 5.9067 7.9832 95.88
Ba2SmBiO6 6.1338 6.1190 8.6532 89.99
Ba2GdBiO6 6.1052 6.0920 8.6003 90.13
Ba2NpBiO6 6.1126 5.7853 8.6922 89.90
Ba2PuBiO6 6.1170 5.8743 8.6877 89.94
Ba2AmVO6 5.9485 5.6029 7.9832 95.77
Ba2AmBiO6 6.0801 5.8152 8.6531 89.89
Pb2EuNbO6 5.6388 6.0449 8.2646 90.12
Pb2EuMoO6 5.6166 5.8858 8.1018 93.50
Pb2EuTaO6 5.6446 6.0645 8.2677 90.12
Pb2TbMoO6 5.5839 5.8143 8.0534 93.49
Pb2TbReO6 5.5793 5.8839 7.9724 91.33
Pb2DyNbO6 5.5948 5.9673 8.2316 90.12
Pb2DyMoO6 5.5725 5.8082 8.0688 93.50
Pb2DyRuO6 5.5515 5.7632 7.9731 91.68
Pb2DyTaO6 5.6005 5.9868 8.2347 90.12
Pb2DyWO6 5.5815 5.8445 8.3123 92.94
Pb2DyOsO6 5.5607 5.9981 8.2088 87.64
Pb2HoNbO6 5.5873 5.9672 8.1806 90.11
Pb2HoMoO6 5.5650 5.8081 8.0178 93.49
Pb2HoRuO6 5.5440 5.7631 7.9221 91.66
Pb2HoTaO6 5.5930 5.9868 8.1837 90.11
Pb2HoWO6 5.5740 5.8445 8.2613 92.93
Pb2HoOsO6 5.5532 5.9981 8.1578 87.63
Pb2ErNbO6 5.5736 5.9421 8.1656 90.10
Pb2ErMoO6 5.5513 5.7830 8.0028 93.48
Pb2ErRuO6 5.5303 5.7380 7.9071 91.66
Pb2ErTaO6 5.5793 5.9617 8.1687 90.10
Pb2ErWO6 5.5603 5.8194 8.2463 92.93
Pb2ErOsO6 5.5395 5.9730 8.1428 87.62
Pb2TmMoO6 5.5376 5.7801 7.9998 93.48
Pb2TmRuO6 5.5166 5.7350 7.9041 91.65
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(1) Elastic Net algorithm, (2) Orthogonal Matching Pursuit algorithm, (3) Linear Regression algorithm, (4) ARD Regression algo-
rithm.

Pb2TmWO6 5.5466 5.8165 8.2433 92.92
Pb2TmOsO6 5.5258 5.9700 8.1398 87.62
Pb2YbVO6 5.5315 5.9095 7.5742 95.81
Pb2YbNbO6 5.5851 6.0199 8.0972 90.01
Pb2YbMoO6 5.5628 5.8608 7.9344 93.40
Pb2YbWO6 5.5718 5.8972 8.1779 92.84
Pb2YbReO6 5.5583 5.9303 7.8534 91.24
Pb2YbOsO6 5.5510 6.0508 8.0744 87.54
Pb2LuNbO6 5.5566 5.9123 8.0915 90.10
Pb2LuMoO6 5.5344 5.7532 7.9287 93.48
Pb2LuRuO6 5.5134 5.7082 7.8330 91.66
Pb2LuTaO6 5.5624 5.9319 8.0946 90.10
Pb2LuWO6 5.5434 5.7896 8.1722 92.93
Pb2LuOsO6 5.5225 5.9432 8.0687 87.62

Composition a, Å1 b, Å2 c, Å3 β, deg4

Table 7. (Contd.)
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Table 8. Prediction of crystal lattice parameters for new compounds of composition BIIIB'VO6 with space group Pbnm

(1) ARD Regression algorithm, (2) Orthogonal Matching Pursuit algorithm, (3) Orthogonal Matching Pursuit algorithm.

Composition a, Å1 b, Å2 c, Å3

Ca2VRuO6 5.4450 5.4891 7.7336
Ca2VWO6 5.4426 5.4942 7.6906
Ca2VUO6 5.9439 6.0479 8.5932
Ca2CrVO6 5.4291 5.3793 7.6249
Ca2CrRuO6 5.4040 5.3713 7.5380
Ca2CrUO6 5.9030 5.9301 8.3976
Ca2MnVO6 5.4164 5.5160 7.7218
Ca2MnMoO6 5.3955 5.5080 7.6164
Ca2MnRuO6 5.3914 5.5080 7.6348
Ca2MnUO6 5.8903 6.0668 8.4945
Ca2FeVO6 5.4461 5.5788 7.8200
Ca2FeUO6 5.9200 6.1296 8.5927
Ca2GaVO6 5.4429 5.5908 7.8498
Ca2GaMoO6 5.4220 5.5828 7.7444
Ca2GaRuO6 5.4179 5.5828 7.7629
Ca2RhUO6 5.9260 6.2269 8.6739
Ca2InVO6 5.5092 5.7359 7.9966
Ca2BiMoO6 5.5112 5.7493 7.8680
Ca2BiRuO6 5.5070 5.7493 7.8865
Ca2BiWO6 5.5047 5.7543 7.8435
Ca2BiReO6 5.5133 5.7837 7.9952
Ca2BiUO6 6.0059 6.3081 8.7461
Sr2VIrO6 5.5160 5.5495 7.7425
Sr2RhUO6 6.0257 6.2621 8.6739
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entropy (I11), enthalpy of atomization, thermal con-
ductivity (I8), molar heat capacity (I10), etc. (see
http://phases.imet-db.ru/elements for values).

There are a total of 105 values of the parameters of
the elements for each compound plus the values of dif-
ferent algebraic functions of the initial parameters
most informative for the classification, determined
using the program [40].

RESULTS AND DISCUSSION

Table 1 lists the functions of the parameters of
chemical elements that are most informative for the
prediction of compounds with different crystal struc-
tures. When solving these problems, it was checked
how much the accuracy of examination predicting
increases when these informative functions are added
to the sought regularities along with the properties of
the elements. The best resulting sets of parameters of
elements and algorithms, which were later used in
machine learning, are highlighted in bold.

The programs based on learning algorithms for dif-
ferent variants of neural networks, of a linear machine,
of the formation of logical patterns, of k-nearest
neighbors, and of support vector machine have shown
the best results in the cross-validation mode.

Further, using the ParLS system, the values of the
crystal lattice parameters for the predicted compounds
were estimated. Table 2 shows a list of algorithms the
use of which in the examination recognition of the
training sample in the LOOCV mode gave the best set
of values for the parameters MAE, MSE, and R2. The
diagrams of the deviations of the predicted lattice
parameters from the experimental ones are given in
Figs. 1 and 2.

It should be noted that most of the best results were
obtained using the programs included in the ParIS
system [41] and based on the Orthogonal Matching
Pursuit and Automatic Relevance Determination
(ARD) Regression algorithms [42]. Tables 3–8 pres-
ent a part of the predictions for A2BB'O6 compounds
that are not yet obtained and an estimate for the
parameters of their crystal lattice.

CONCLUSIONS

The analysis of the results shows that the majority
of double perovskites with calcium and strontium have
monoclinic distortion (space group P21/n). For com-
pounds with barium, a doubling of the ideal cubic lat-
tice is characteristic (space group Fm(–)3m). The pre-
diction accuracy (in the sliding control mode) of the
type of perovskite-like cell distortion is no less than
74%. The accuracy of estimation of the linear param-
eters of the lattice is within ±0.0120–0.8264 Å,
whereas the accuracy for angles β in the case of lattice
monoclinic distortion amounts to ±0.08°–0.74°.
INORGANIC MATERIALS: APPLIED RESEARCH  Vol.
The obtained predictions make it possible to
reduce the number of combinations of elements in the
experimental search for perovskite-like compounds
with the desired space group, which should reduce the
time and costs of the search. For specialists in quan-
tum mechanical calculations, it becomes possible,
although approximately, knowing the space group and
the lattice parameters, to determine the arrangement
of atoms in the crystal lattice of compounds not yet
obtained, which in the future should make it possible
to calculate some of their physical properties.

The information concerning the composition,
space group, and lattice parameters of the predicted
compounds that are not yet obtained after the publica-
tion of this paper should be entered into the prediction
base and should expand the functionality of the Phase
database (http://phases.imet-db.ru/). A user of this
database, in addition to data concerning already stud-
ied inorganic compounds, should be able to obtain the
results of our calculations too.

FUNDING

This work was performed under partial financial support
from the Russian Foundation for Basic Research, projects
20-01-00609 and 18-07-00080, and according to the State
Order no. 075-00328-21-00.

REFERENCES
1. Corredor, L.T., Téllez, D.A.L., Buitrago, D.M., Agu-

iar, J.A., and Roa-Rojas, J., Magnetic properties and
structural characterization of Sr2RuHoO6 complex per-
ovskite, Phys. B, 2010, vol. 407, no. 16, pp. 3085–3088. 
https://doi.org/10.1016/j. physb.2011.12.031

2. Hinatsu, Y., Doi, Y., and Wakeshima, M., Antiferro-
magnetic transitions of osmium-containing rare earth
double perovskites Ba2LnOsO6 (Ln = rare earths),
J. Solid State Chem., 2013, vol. 206, pp. 300–307. 
https://doi.org/10.1016/j.jssc.2013.08.020

3. Li, M.-R., Retuerto, M., Deng, Z., Stephens, P.W.,
Croft, M., Huang, Q., Wu, H., Deng, X., Kotliar, G.,
Sanchez-Benitez, J., Hadermann, J., Walker, D., and
Greenblatt, M., Giant magnetoresistance in the half-
metallic double-perovskite ferrimagnet Mn2FeReO6,
Angew. Chem. Int. Ed., 2015, vol. 54, no. 41, pp. 12069–
12073. 
https://doi.org/10.1002/anie.201506456

4. Sahnoun, O., Bouhani-Benziane, H., Sahnoun, M.,
and Driz, M., Magnetic and thermoelectric properties
of ordered double perovskite Ba2FeMoO6, J. Alloys
Compd., 2017, vol. 714, pp. 704–708. 
https://doi.org/10.1016/j.jallcom.2017.04.180

5. Aguirre, M.H., Logvinovich, D., Bocher, L., Robert, R.,
Ebbinghaus, S.G., and Weidenkaff, A., High-tempe-
rature thermoelectric properties of Sr2RuYO6 and
Sr2RuErO6 double perovskites influenced by structure
and microstructure, Acta Mater., 2009, vol. 57, no. 1,
pp. 108–115. 
https://doi.org/10.1016/j.actamat.2008.09.003
 13  No. 2  2022



292 KISELYOVA et al.
6. Sri Gyan, D., Dwivedi, A., Roy, P., and Maiti, T., Syn-
thesis and thermoelectric properties of Ba2TiFeO6
double perovskite with insight into the crystal structure,
Ferroelectrics, 2018, vol. 536, no. 1, pp. 146–155. 
https://doi.org/10.1080/00150193.2018.1528922

7. Murugesan, G., Nithya, R., and Kalainathan, S., Co-
lossal dielectric behaviour of Sr2TiMnO6 – δ single crys-
tals, J. Cryst. Growth, 2020, vol. 530, art. ID 125179. 
https://doi.org/10.1016/j.jcrysgro.2019.125179

8. Gorodea, I., Goanta, M., and Toma, M., Impact of A
cation size of double perovskite A2AlTaO6 (A = Ca, Sr,
Ba) on dielectric and catalytic properties, J. Alloys Com-
pd., 2015, vol. 632, nos. 1–2, pp. 805–809. 
https://doi.org/10.1016/j.jallcom.2015.01.310

9. Feraru, S., Samoila, P., Borhan, A.I., Ignat, M., Ior-
dan, A.R., and Palamaru, M.N., Synthesis, characteri-
zation of double perovskite Ca2MSbO6 (M = Dy, Fe,
Cr, Al) materials via sol–gel auto-combustion and their
catalytic properties, Mater. Charact., 2013, vol. 84,
pp. 112–119. 
https://doi.org/10.1016/j.matchar.2013.07.005

10. Huang, Y.-H., Liang, G., Croft, M., Lehtimaki, M.,
Karppinen, M., and Goodenough, J.B., Double-per-
ovskite anode materials Sr2MMoO6 (M = Co, Ni) for
solid oxide fuel cells, Chem. Mater., 2009, vol. 21,
no. 10, pp. 2319–2326. 
https://doi.org/10.1021/cm8033643

11. Rath, M.K. and Lee, K.-T., Characterization of novel
Ba2LnMoO6 (Ln = Pr and Nd) double perovskite as the
anode material for hydrocarbon-fueled solid oxide fuel
cells, J. Alloys Compd., 2018, vol. 737, pp. 152–159. 
https://doi.org/10.1016/j.jallcom.2017.12.090

12. Ravi, S., Multiferroism in Pr2FeCrO6 perovskite, J.
Rare Earths, 2018, vol. 36, no. 11, pp. 1175–1178. 
https://doi.org/10.1016/j.jre.2018.03.023

13. Gou, G., Charles, N., Shi, J., and Rondinelli, J.M.,
A-site ordered double perovskite CaMnTi2O6 as a mul-
tifunctional piezoelectric and ferroelectric–photovol-
taic material, Inorg. Chem., 2017, vol. 56, no. 19,
pp. 11854–11861. 
https://doi.org/10.1021/acs.inorgchem.7b01854

14. Anderson, M.T., Greenwood, K.B., Taylor, G.A., and
Poeppelmeier, K.R., B-cation arrangements in double
perovskites, Prog. Solid State Chem., 1993, vol. 22,
no. 3, pp. 197–233. 
https://doi.org/10.1016/0079-6786(93)90004-B

15. Glazer, A.M., The classification of tilted octahedral in
perovskites, Acta Crystallogr., Sect. B, 1972, vol. 28,
no. 11, pp. 3384–3392. 
https://doi.org/10.1107/S0567740872007976

16. Howard, C.J. and Stokes, H.T., Group-theoretical
analysis of octahedral tilting in perovskites, Acta Crys-
tallogr., Sect. B, 1998, vol. 54, no. 6, pp. 782–789. 
https://doi.org/10.1107/S0108768198004200

17. Lufaso, M.W. and Woodward, P.M., Prediction of the
crystal structures of perovskites using the software pro-
gram SPuDS, Acta Crystallogr., Sect. B, 2001, vol. 57,
no. 6, pp. 725–738. 
https://doi.org/10.1107/S0108768101015282

18. Lufaso, M.W., Barnes, P.W., and Woodward, P.M.,
Structure prediction of ordered and disordered multiple
octahedral cation perovskites using SPuDS, Acta Crys-
INORGANIC MATE
tallogr., Sect. B, 2006, vol. 62, no. 3, pp. 397–410. 
https://doi.org/10.1107/S010876810600262X

19. Askerka, M., Li, Z., Lempen, M., Liu, Y., Johnston,
A., Saidaminov, M.I., Zajacz, Z., and Sargent, E.H.,
Learning-in-templates enables accelerated discovery
and synthesis of new stable double-perovskites, J. Am.
Chem. Soc., 2019, vol. 141, no. 8, pp. 3682–3690. 
https://doi.org/10.1021/jacs.8b13420

20. Dimitrovska, S., Aleksovska, S., and Kuzmanovski, I.,
Prediction of the unit cell edge length of cubic

BB′O6 perovskites by multiple linear regression and
artificial neural networks, Cent. Eur. J. Chem., 2005,
vol. 3, no. 1, pp. 198–215.

21. Li, W., Jacobs, R., and Morgan, D., Predicting the
thermodynamic stability of perovskite oxides using ma-
chine learning models, Comput. Mater. Sci., 2018,
vol. 150, pp. 454–463. 
https://doi.org/10.1016/j. commatsci.2018.04.033

22. Majid, A., Khan, A., and Choi, T.-S., Predicting lattice
constant of complex cubic perovskites using computa-
tional intelligence, Comput. Mater. Sci., 2011, vol. 50,
no. 6, pp. 1879–1888. 
https://doi.org/10.1016/j.commatsci.2011.01.035

23. Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B.P.,
Ramprasad, R., Gubernatis, J.E., and Lookman, T.,
Machine learning bandgaps of double perovskites, Sci.
Rep., 2016, vol. 6, art. ID 19375. 
https://doi.org/10.1038/srep19375

24. Xie, S.R., Kotlarz, P., Hennig, R.G., and Nino, J.C.,
Machine learning of octahedral tilting in oxide per-
ovskites by symbolic classification with compressed
sensing, Comput. Mater. Sci., 2020, vol. 180, art. ID
109690. 
https://doi.org/10.1016/j.commatsci.2020.109690

25. Xu, Q., Li, Z., Liu, M., and Yin, W.-J., Rationalizing
perovskites data for machine learning and materials de-
sign, J. Phys. Chem. Lett., 2018, vol. 9, no. 24,
pp. 6948–6954. 
https://doi.org/10.1021/acs.jpclett.8b03232

26. Kiselyova, N.N., Pokrovskii, B.I., Komissarova, L.N.,
and Vashchenko, N.D., Simulation of the complicated
oxides formation from initial components based on the
cybernetic method of concept formation, Zh. Neorg.
Khim., 1977, vol. 22, no. 4, pp. 883–886.

27. Kiselyova, N.N., Komp’yuternoe konstruirovanie neor-
ganicheskikh soedinenii. Ispol’zovanie baz dannykh i
metodov iskusstvennogo intellekta (Computer-Assisted
Design of Inorganic Compounds: Application of Data-
bases and Artificial Intelligence Methods), Moscow:
Nauka, 2005.

28. Zhuravlev, Yu.I., Ryazanov, V.V., and Sen’ko, O.V.,
Raspoznavanie. Matematicheskie metody. Programmnaya
sistema. Prakticheskie primeneniya (Recognition.
Mathematical Methods. Software System. Practical
Applications), Moscow: FAZIS, 2006.

29. Kiselyova, N.N., Stolyarenko, A.V., Ryazanov, V.V.,
Sen’ko, O.V., Dokukin, A.A., and Podbel’skii, V.V., A
system for computer-assisted design of inorganic com-
pounds based on computer training, Pattern Recognit.
Image Anal., 2011, vol. 21, no. 1, pp. 88–94. 
https://doi.org/10.1134/S1054661811010081

+2
2A
RIALS: APPLIED RESEARCH  Vol. 13  No. 2  2022



PREDICTION OF SPACE GROUPS 293
30. Zhuravlev, Yu.I., Kiselyova, N.N., Ryazanov, V.V.,
Sen’ko, O.V., and Dokukin, A.A., Design of inorganic
compounds with the use of precedent-based pattern
recognition methods, Pattern Recognit. Image Anal.,
2011, vol. 21, no. 1, pp. 95–103. 
https://doi.org/10.1134/S1054661811010135

31. Kiselyova, N.N., Dudarev, V.A., Ryazanov, V.V.,
Sen’ko, O.V., and Dokukin, A.A., Predictions of chal-
cospinels with composition ABCX4 (X–S or Se), Inorg.
Mater.: Appl. Res., 2021, vol. 12, no. 2, pp. 328–336, 
https://doi.org/10.1134/S2075113321020246

32. Wong, N.W., Kaduk, J.A., Luong, M., and Huang, Q.,
X-ray diffraction study and powder patterns of double-
perovskites Sr2RSbO6 (R = Pr, Nd, Sm, Eu, Gd, Dy,
Ho, Y, Er, Tm, Yb, and Lu), Powder Diffr., 2014,
vol. 29, no. 4, pp. 371–378. 
https://doi.org/10.1017/S0885715614000566

33. Lavat, A.E. and Baran, E.J., Structural and IR-spec-
troscopic characterization of some new Sr2LnSbO6
perovskites, J. Alloys Compd., 2008, vol. 460, nos. 1–2,
pp. 152–154. 
https://doi.org/10.1016/j.jallcom.2007.06.003

34. Evdokimov, A.A. and Men’shenina, N.F., Unit cell pa-
rameters of Ba2REO6, E = Nb, Ta, Zh. Neorg. Khim.,
1982, vol. 27, no. 8, pp. 2137–2139.

35. Saines, P.J., Kennedy, B.J., and Elcombe, M.M.,
Structural phase transitions and crystal chemistry of
the series Ba2LnB′O6 (Ln = lanthanide and B′ = Nb5+

or Sb5+), J. Solid State Chem., 2007, vol. 180, no. 2,
pp. 401–409. 
https://doi.org/10.1016/j.jssc.2006.10.017

36. Henmi, K., Hinatsu, Y., and Masaki, N.M., Crystal
structures and magnetic properties of ordered per-
ovskites Ba2LnNbO6 (Ln = lanthanide elements), J.
Solid State Chem.,1999, vol. 148, no. 2, pp. 353–360. 
https://doi.org/10.1006/jssc.1999.8460

37. Fu, W.T. and Ijdo, D.J.W., New insight into the sym-
metry and the structure of the double perovskites
Ba2LnNbO6 (Ln = lanthanides and Y), J. Solid State
Chem., 2006, vol. 179, no. 4, pp. 1022–1028. 
https://doi.org/10.1016/j.jssc.2005.12.031

38. Ozherel’ev, I.S., Sen’ko, O.V., and Kiselyova, N.N.,
Method for searching outlier objects using parameters
of learning instability, Sist. Sredstva Inform., 2019,
vol. 29, no. 2, pp. 122–134. 
https://doi.org/10.14357/08696527190211

39. Dineev, V.D. and Dudarev, V.A., Extendable system for
multicriterial outlier detection, CEUR Workshop Proc.
(CEUR-WS.org), Suppl. Proc. 22nd Int. Conf. on Data
Analytics and Management in Data Intensive Domains
(DAMDID/RCDL 2020), 2020, vol. 2790, pp. 103–113.
http://ceur-ws.org/Vol-2790/paper10.pdf

40. Senko, O.V., An optimal ensemble of predictors in con-
vex correcting procedures, Pattern Recognit. Image
Anal., 2009, vol. 19, no. 3, pp. 465–468. 
https://doi.org/10.1134/S1054661809030110

41. Dudarev, V.A., Kiselyova, N.N., Stolyarenko, A.V., Do-
kukin, A.A., Senko, O.V., Ryazanov, V.V., Vashchen-
ko, E.A., Vitushko, M.A., and Pereverzev-Orlov, V.S.,
An information system for inorganic substances physi-
cal properties prediction based on machine learning
methods, CEUR Workshop Proc. (CEUR-WS.org), Sup-
pl. Proc. 22nd Int. Conf. on Data Analytics and Manage-
ment in Data Intensive Domains (DAMDID/RCDL
2020), 2020, vol. 2790, pp. 89–102. http://ceur-
ws.org/Vol-2790/paper09.pdf

42. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., et al., Scikit-learn: Machine
learning in python, J. Mach. Learn. Res., 2011, vol. 12,
pp. 2825–2830.

Translated by O. Polyakov
INORGANIC MATERIALS: APPLIED RESEARCH  Vol. 13  No. 2  2022


	INTRODUCTION
	CALCULATION METHODS
	CALCULATION PROCEDURE
	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES

