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Abstract—The article discusses a new two-level regression analysis method in which a corrective procedure is
applied to optimal ensembles of regression trees. Optimization is carried out based on the simultaneous
achievement of the divergence of the algorithms in the forecast space and a good approximation of the data
by individual algorithms of the ensemble. Simple averaging, random regression forest, and gradient boosting
are used as corrective procedures. Experiments are presented comparing the proposed method with the stan-
dard decision forest and the standard gradient boosting method for decision trees.

Keywords: regression, collective methods, bagging, gradient boosting
DOI: 10.1134/S1064562421040177
INTRODUCTION

Regression modeling methods based on computing
more accurate collective forecasts from predictions
made by a set (ensemble) of less accurate and simpler
original algorithms have been widely used in modern
machine learning. These methods include random
regression forest and methods based on adaptive or
gradient boosting. An important role in the construc-
tion of collective algorithms is played by the method of
obtaining the original ensemble of so-called weak
algorithms. A theoretical analysis shows that the gen-
eralization ability can be improved by using an ensem-
ble of algorithms that not only have high accuracy, but
also produce maximally diverging forecasts [1]. The
low correlation between forecasts potentially makes it
possible to achieve a more accurate algorithmic
approximation, which objectively ensures the most
accurate forecast with the use of a bounded number of
algebraic operations [2, 3]. In the random regression
forest method, the divergence of forecasts is achieved
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by training the algorithms of the ensemble on different
samples generated from the original training sample
with the use of bootstrap [4]. In the gradient boosting
method [5], an ensemble is generated sequentially.
At every iteration step, the ensemble is supplemented
with trees approximating the first derivatives of the
loss function with respect to the variables correspond-
ing to collective forecast.

Another important component is the method used
to compute collective forecast, which can also be
interpreted as a result of mutual correction of fore-
casts. In the random regression forest method, correc-
tion is carried out by simple computation of average
forecasts.

Another possible method for organizing a correc-
tive procedure is the stacking scheme, in which the
outputs of the ensemble algorithms are treated as input
features of an algorithm computing an output cor-
rected forecast [6, 7]. As a rule, the efficiency of stack-
ing is low as applied to the computation of collective
decisions from sets of weak algorithms produced by
random forest generation procedures. It can be
assumed that the low efficiency is caused by the insuf-
ficient divergence of the weak algorithms in the fore-
cast space in the case of standard ensemble generation
methods.

The goal of this paper is to study the efficiency of a
two-level method for improving the generalization
ability, which involves the construction of an ensemble
consisting of algorithms characterized by high-degree
divergence in the forecast space and a good approxi-
mation of the target variable. Simple averaging and
stacking are used as a corrective procedure.



2 ZHURAVLEV et al.
TWO-LEVEL METHOD

Let  be an ensemble of algo-
rithms predicting the value of a variable  from a given
vector X of variables . It is assumed that the
algorithms of the ensemble are trained on a sample

. Preliminarily, a baseline
regression analysis method is chosen, which usually
represents a regression tree model. Define

 and . Accord-

ing to the declared goal, an ensemble is constructed by
simultaneously minimizing the criterion

which estimates the average approximation error of 
by the vector X, and maximizing the criterion

which is the variance of the forecasts produced by the
algorithms of the ensemble.

The problem of simultaneously minimizing 
and maximizing  can be reduced to the minimiza-
tion of

where  determines the contribution of the het-
erogeneity of the ensemble in the terms of the forecast
variance.

Let  and  denote the variations in the func-
tionals  and  occurring when the ensemble is
supplemented with an algorithm .

where  does not depend on .
To compute , we use the well-known variance

expression
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where  does not depend on .
An approach for minimizing  is to reduce this

problem to the search for an algorithm  (added to
the ensemble) that minimizes the functional

where  does not depend on . An algorithm
to be added to the ensemble at the step k + 1 is con-
structed by combining bagging and a gradient boosting
procedure and consists of the following two stages:

1. At the first stage, a random number generator is
applied to the original sample S to produce a sample
with replacement , which is then used to train the
algorithm .

2. At the second stage, an algorithm  to be
added to the ensemble is constructed. The algorithm

 computes the forecast of  at the point  using
the formula

where  is an algorithm predicting the gradient
of the functional  at the point

.
The algorithm  is trained on the sample

.
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Table 1. Experimental results

Reference Forest Boosting Average

I2/m, a 0.943 ± 0.0012 0.948 ± 0.0031 0.941 ± 0.005 0.94 ± 0.0025

I2/m, b 0.692 ± 0.0087 0.78 ± 0.0038 0.746 ± 0.012 0.758 ± 0.0088

I2/m, c 0.847 ± 0.004 0.875 ± 0.0052 0.856 ± 0.0051 0.87 ± 0.0063

I4/m, c 0.99 ± 0.0015 0.993 ± 0.0006 0.993 ± 0.0007 0.994 ± 0.0003

Fm3(–)m, a 0.636 ± 0.0019 0.639 ± 0.0026 0.615 ± 0.0034 0.631 ± 0.0041

P21/n, a 0.593 ± 0.0075 0.575 ± 0.005 0.575 ± 0.0052 0.572 ± 0.0041

P21/n, b 0.928 ± 0.0004 0.903 ± 0.0019 0.895 ± 0.0025 0.906 ± 0.0009

P21/n, c 0.441 ± 0.0047 0.516 ± 0.0103 0.439 ± 0.013 0.54 ± 0.008

R3(–), c 0.319 ± 0.0146 0.343 ± 0.013 0.364 ± 0.0178 0.346 ± 0.0134

A3BHal6, Tm 0.903 ± 0.0001 0.893 ± 0.0015 0.89 ± 0.0014 0.895 ± 0.0009

ABHal3, Tm 0.861 ± 0.02 0.874 ± 0.022 0.881 ± 0.021 0.871 ± 0.021
It is easy to show that

EXPERIMENTS

The method was implemented using the Python
language with the help of the scikit-learn library [8].
The baseline trees were constructed by applying the
BaggingRegressor method. At the second level, we
used GradientBoostingRegressor (which is referred to
hereafter as boosting) or RandomForestRegressor
(forest) or the results of the baseline methods were
averaged (average). GradientBoostingRegressor was
also used as a reference technique for estimating the
efficiency of the proposed method.

The developed method was used to predict the
parameters of the crystal lattice of the complex inor-
ganic compound  and the melting points
of the halides  and . For various space
symmetry groups, we present results for some of the
parameters admitting sufficiently reliable forecast,
namely: the parameters a, , and  for monoclinic
space groups (  and ); the parameter  for
tetragonal ( ) and hexagonal ( ) groups; and
the parameter a for the cubic group . The
accuracy was evaluated using the standard characteris-
tic r2, or the determination coefficient, which was
computed by applying cross validation. Since algo-
rithms in the bagging procedure are generated to a
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large degree at random, the solution results for the
same problem change from experiment to experiment.
Accordingly, for each problem, Table 1 presents the
value of r 2 averaged over 10 experiments.

CONCLUSIONS
The results given in Table 1 show that, in most cases,

the proposed two-level method yields better results than
the standard gradient boosting algorithm, which
prompts further research in this direction. We intend to
explore the possibility of choosing an optimal gradient
descent step size (in terms of certain criteria) in cor-
recting bagging-generated algorithms.
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