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Abstract—Multilevel learning systems have become more popular in pattern recognition and regression anal-
ysis. In this paper, a two-level method for constructing a multidimensional regression model is considered,
in which a family of optimal convex combinations of simple one-dimensional least-square regressions is gen-
erated at the first level. The second level of the proposed learning system is given by an elastic net. Experi-
mental verification presented demonstrate the efficiency of the proposed regression estimation method as
applied to problems with a small amount of data.
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Multilevel learning systems, in which the results
produced by node algorithms located at a low level are
later used by higher level algorithms, have become
more popular in pattern recognition and regression
analysis. In this context, we mention multilayered
neural network methods and methods of algebraic
correction over ensembles of algorithms. In this paper,
a two-level method for constructing a multidimen-
sional regression model is considered, in which a fam-
ily of optimal convex combinations of simple one-
dimensional least squares regressions is generated at
the first level. For this purpose, we use the method
from [1], which generates families of locally optimal
convex combinations (LOCC) of one-dimensional
regressions. In experiments with artificially generated
data, it is shown that the use of weighted collective
solutions over sets of LOCC with a nearly optimal cor-
relation coefficient allows one to achieve a higher gen-
eralization ability as compared with the elastic net
method [2]. The second level in the proposed learning
system is given by an elastic net. Experimental verifi-
cation is based on applying the elastic net to the origi-
nal set of features of a problem and, then, to the fea-
tures calculated using selected convex combinations.

Let us describe what was said above in a more rig-
orous manner and present the most important results
of experiments.
11

a Dorodnicyn Computing Center, Federal Research Center 
“Computer Science and Control”, Russian Academy 
of Sciences, Moscow, 119333 Russia
b Baikov Institute of Metallurgy and Materials Science, 
Russian Academy of Sciences, Moscow, 119991 Russia
*e-mail: dalex@ccas.ru
We consider the standard problem of multidimen-
sional regression analysis. The variable Y is predicted
by variables  with the help of a linear regres-
sion function

It is assumed that the vector  is determined
by a training sample , j = .

Assume that there is a set of l predictors producing
the values of Y. In what follows, the prediction pro-
duced by the ith predictor for an object 
is denoted by . Let  be a vector of
real nonnegative coefficients satisfying the condition

 = 1. A convex combination of the indicated pre-

dictors is a procedure computing a collective predic-
tion  of the form

A convex combination is treated as optimal if it cor-
relates in the best way with the target variable Y [1].
An algorithm for finding an optimal convex combina-
tion based on the concept of an irreducible nonex-
pandable ensemble of predictors was described in [3].

An ensemble of predictors is called irreducible with
respect to the correlation coefficient if no convex
combination of its subset yields a greater correlation
with the target variable than some convex combination
of the original ensemble.
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Fig. 1. Change in the prediction quality for various samples in
the transition to the new feature space for the model problem. 
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An irreducible ensemble is said to be nonexpand-
able if there is no other irreducible ensemble contain-
ing all predictors of the original one.

Procedures for verifying the irreducibility of an
ensemble and for computing the coefficients of an
optimal convex combination for a given ensemble of
predictors were described in [1, 3]. They produce an
optimal ensemble by sequentially increasing the num-
ber of predictors in it. One-dimensional regressions

, , are constructed by the standard least
squares method on samples of separate features, i.e.,
sets . In this case, the verification of irreducibil-
ity means verifying that the correlation coefficient of

 and Y is positive. Then, from all pairs of predictors,
those that do not satisfy the irreducibility condition for
the convex combination are eliminated. The remain-
ing pairs are supplemented to become triplets, etc., as
long as irreducible ensembles are obtained. For all
irreducible ensembles, we calculate the correlation
coefficients. As a result, an optimal ensemble is found
and a set of ensembles close to it in quality is obtained.

Selected regressions were regarded as new features for
the initial problem. Experimental verification was based
on learning an elastic net [2] on the original set of features,
a new set, and their union. The quality was checked by
applying leave-one-out cross-validation. The correlation
coefficient with the response variable and the determina-
tion coefficient -score were used as quality metrics.

The experiments were performed with model data
and with sets of problems of predicting variables from
medicine and inorganic chemistry. In most cases, the
generalization ability of the elastic net model in the
new feature space was better and sometimes much bet-
ter. However, there were also negative results, which
suggest that the method is not universal.

The most indicative were the results of the follow-
ing model problem. In the given problem, 550 features
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were generated, of which only 5% were relevant. The
response variable was a linear function of the relevant
features. There were generated 100 pairs of samples
(training and test), each consisting of 40 objects.

For each pair of samples, the following procedure
was performed in the experiment. Its results are pre-
sented in Fig. 1. First, the elastic net was trained using
the training sample and the resulting quality was esti-
mated using the test set (crosses). Then the training
sample was used to construct convex combinations,
out of which those were selected whose correlation
coefficient with the response variable was at least 95%
of the correlation value for the best combination. The
selected combinations were used as a new feature
space in which the quality of the elastic net was mea-
sured in tuning for the training sample and were esti-
mated using the test sample (circles). It can be seen
from the figure that the quality is improved noticeably
in most cases.

An example of an application problem for which
the use of LOCC leads to considerable improvement
of the prediction accuracy is the problem of predicting
the melting point of compounds with the composition

 where  are different metals and  is F, Cl,
Br, or I. For a feature description, we chose informa-
tion on 55 parameters of the chemical elements A and
Hal. The training sample included data on 155 com-
pounds with known melting points. Studies involving
leave-one-out cross-validation demonstrated that the
accuracy of the prediction improved significantly with
the use of convex combinations. The r2-score
increased from 0.548 in the case of an elastic net used
only on the original variables to 0.775 in the case of
using a mixture of the original variables and
120 LOCCs.

Thus, the results presented demonstrate the effi-
ciency of the method as applied to problems with a
small amount of data.
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