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Abstract—It is proposed to use the degrees of membership of objects to each class in the process of recognition
in the linear corrector model to solve the problem of restoring dependences from precedent samples. Two
models of the algorithm for calculating estimates are used as classifiers. The work of the proposed model is
compared with the original method and with the well-known data analysis methods. The dependence of the
work of the linear corrector on its parameters is studied.
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INTRODUCTION

We consider the problem of restoring the depen-
dence between an object (a vector of independent vari-
ables (features) , , where 
is a set of valid descriptions of the th feature) and the
target value  from the precedent sample

. It is assumed that there exists a depen-
dence  (regression problem).

There are numerous methods and approaches for
restoring dependences from precedent samples. How-
ever, they all have their limitations in solving real
problems.

In the case of a finite set of values of the target, the
recognition or classification problem is solved. For
this problem, there are various models and algorithms
for which the properties of correctness and stability
have been studied.

Therefore, with respect to regression problems, it
was proposed [1, 2] to transfer the difficulties associ-
ated with comparing objects in the feature space (dif-
ferent types, different information content of the fea-
tures, agreement of metrics for individual features) to
classification problems and apply dependence resto-
ration methods based on their solution with subse-
quent correction in the space of the target values.
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In this paper, we propose to use the degrees of
membership of objects to each class in the recognition
process in the linear corrector model [3] based on the
solution of the set of classification problems generated
using the training sample, and subsequent correction
in the space of the target values.

Objectives of the study:
1. Implementing the degrees of membership in the

linear corrector model of dependence restoration.
2. Comparing two different methods for determin-

ing the proximity function in the algorithms for calcu-
lating estimates as classifiers of the linear corrector.

3. Comparing the results of the original linear cor-
rector method and the proposed replacement method.

4. Studying the dependence of two variants of the
linear corrector on its parameters.

5. Comparing the results of the proposed linear
corrector model with the results obtained using the
well-known data analysis methods.

Comparative experiments were carried out using
samples with data on the parameters (a and c) of the
tetragonal crystal lattice of known compounds of
composition A2B2DO7 with a melilite-type structure.
Since these compounds can include cations A and B of
different valence, two samples were analyzed. The first
sample included the information on 37 melilites of
composition A+2

2B D+4O7; and the second sample
included the data on 28 compounds of composition
A+2B D O7, where D is Si or Ge.

+3
2

+2
2

+4
2

69. © Pleiades Publishing, Ltd., 2020.



64 LUKANIN et al.
As features, we used the parameters of the chemical
elements A, B, and D, as well as the properties of their
simple oxides (AO, BO, B2O3, or DO2) selected based
on the experience of chemists. In addition, using a
special software [4], the algebraic functions of these
properties were selected, which were most important
for separating the melilite-structure compounds from
substances of the same composition but with a differ-
ent crystal structure. The resulting training sample
included 108 properties (all the initial parameters of
elements A, B, and D and the most informative alge-
braic functions of these parameters).

1. LINEAR CORRECTOR 
AND PROPOSED REPLACEMENT

Consider the linear corrector model for restoring
dependences [3]. In this model, the real line is first
divided into  intervals: , …, , , …,

, …, , …, . From the resulting
partition ,  sets of  intervals  are
obtained, based on which training samples of  clas-
sification problems for  classes are formed [3].

Let us express parameter  through  and . To do
this, we group the adjacent intervals of partition 
sequentially in all ways, without rearranging them
along the real axis. The recursive formula for calculat-
ing the  value is as follows:

Now it will be easier to compare the work of meth-
ods at different values of pairs of parameters.

Further, we select and train classifiers.

Let  be the average value of the tar-

get in the interval , . Let  =

, , , where  is the

index of the last partition from  included in the th
interval in the th classification problem. Classes are
formed according to the following rule: object 
belongs to class  if and only if  ∈  and

, , , .
Let us build a response vector  =

, where  if classifier 
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assigned object  to class . A linear corrector is a
function f : ,  = , where  is the

vector of weights,  [3]. The vector of weights
 of the linear corrector is obtained by solving the

optimization problem

using the stochastic gradient descent.
It is proposed to replace each component  of

the response vector  with ,

, where  is the degree (measure) of

membership of object  to class  in the th classifi-
cation problem. These parameters are found as the
result of optimization (training) for each partition.
The following restrictions can be imposed:

1. , , ,

2. , .

Thus, we will consider two models of the linear
corrector f: ,  = ,  =

, where

1.  if classifier  assigned object  to

class  , , and

2.  .

In the original method, we, in fact, multiply by
vectors of zeros and one unit: the degree of member-
ship is equal to one for the class to which the classifier
assigned the object and zero for the other classes. In
the proposed method, we will multiply by a vector of
membership measures for each involved class of the
classification problem.

2. TWO PROXIMITY FUNCTIONS 
IN MODELS OF ALGORITHMS

FOR CALCULATING ESTIMATES
Algorithms for calculating estimates (ACE) are

suited for finding degrees of membership of objects to
each class in the process of recognition [5, 6]. Let us
consider two ACE models: as a proximity function, we
will use both the metric function and the function for
arbitrary ordinal features [7].

The first model considers the set Ω of all possible
support sets (these sets define the numbers of features
by which parts of the reference objects and recognized
objects are compared) with cardinality  and the func-
tion of proximity of a recognized object  to some ref-
erence object  of class , , ,
which appears as
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where  is the vector of features’ measurement accu-
racy. Thus, the distances between the features of the
objects are calculated or, in other words, a metric is
introduced.

In the second model, the following proximity func-
tion was considered for the same support sets:

where  is the object being recognized;  and  are

the reference objects of class ; and ∨ is a disjunc-
tion. This proximity function can already be used for
any ordinal features (i.e., when the distance between
the two values of the feature has no meaning), since it
only examines whether the values of the features of the
compared objects are within certain limits for a given
informative fragment.

In the first case, we use an auxiliary function
 = , . Then,

the estimate for class  looks as follows [5]:

if  and

if .
In the second case, similarly to the first, we intro-

duce the function  = 
∨ ,  and obtain

if  and

if .
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Let us write out the process of calculating estimates
in the cross-validation mode. We assume that the test
sample coincides with the training sample. In the case
of the first model, it is necessary to calculate the

matrix , where  (the parame-

ter value  is chosen by ourselves). Then,  =

, if , and  =

, if . In the case of the sec-

ond model, it is necessary to calculate the matrix

, where  =  and use it in
the calculation of estimates.

For both ACE models, in order to obtain the degree
of membership of an object to each class, it is neces-
sary to normalize estimates for classes using the -
norm: . This is necessary to satisfy the
limitations of the proposed replacement in the linear
corrector.

In the original linear corrector model, i.e., when all
degrees of membership except one are zero, it is also
possible to use ACE. However, in this case, it is neces-
sary to determine the following decision rule: the
object will belong to the class with the maximum cal-
culated estimate.

Let us give a description of finding the parameters
 , i.e., the components of the vector of the

features’ measurement accuracy, , which is used for
the first ACE model. First, we obtain all the unique
target values of the training sample. To do this, we set
the number of digits for rounding the targets: to the
right of the decimal point if this number is positive and
to the left of the decimal point if the number is nega-
tive. Those targets whose rounded values are equal up
to this order of magnitude will be considered non-
unique. We find the minimum and maximum values
of each feature corresponding to each unique target
value and calculate their difference. Further, we
obtain the features’ measurement accuracies as the
averages of these differences over all the unique values
of the target.

3. STUDY OF THE PROPOSED MODEL

The regression problem of estimating the parame-
ters of a melilite crystal lattice will be solved using the
original linear corrector model and the proposed
replacement model with the two described ACE mod-
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Fig. 1. Mean square error of the prediction as a function of parameters  and  of two linear correctors that use the first ACE
model. 
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els as classifiers. We will apply cross-validation to the
data and compare the averaged mean square errors of
the prediction on the test samples.

3.1. Comparison of the Linear Corrector Versions

In this part of the study, we compare the results of
the two versions of the linear corrector: the original
method and the method with the proposed replace-
ment.

The following ranges of values were considered as
hyperparameters  and  of the algorithms: 3 ≤ n ≤ 17
and .

Figure 1 shows the chart of the mean square error
of the prediction of the linear corrector algorithms that
use the first ACE model versus hyperparameters  and
. The  axis shows the values of parameter ; the cor-

responding values of parameter  ( ) are indi-
cated by strokes for compactness. In other words, the
value of parameter  marked on the  axis corresponds
to the pair of the algorithm parameters , the
stroke to the right of it corresponds to , etc., until

. The  axis shows the mean square error (MSE)
of the prediction. The gray markers indicate the pre-
diction errors of the original linear corrector method
without using the degrees of membership, i.e., when
the object belongs to the class with the maximum
obtained estimate. The black markers show the same
for the method with the proposed replacement, taking
into account the degrees of membership of objects to
classes. The markers are connected by lines for conve-
nience.

n l
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n
l x n
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It can be seen from this chart that the method with
the proposed replacement almost always works better
than the original; i.e., it gives a smaller error for the
problem under consideration.

Figure 2 shows a similar chart for the second ACE
model.

We can find out from Fig. 2 that the proposed
method with the second model (with the proximity
function for arbitrary ordinal features) also often gives
smaller mean square errors.

This is easier to see in the following two charts. We
average the mean square errors of the prediction over
all values of parameter  for fixed values of . Figures
3a and 3b show this dependence for both correctors
using the first and second ACE models, respectively.

It is worth noting that the linear corrector with the
proposed replacement gives the smallest errors in the
case of both the first (0.016) and the second (0.0205)
ACE model.

3.2. Dependence of the Linear Corrector 
on Its Hyperparameters

Let us note the dependence of the errors of the two
versions of the linear correctors on its parameters 
and .

Figure 1 clearly shows small f luctuations of the
error of the proposed method for almost all the pairs
of  and : if we take non-extreme values of , all the
MSEs are approximately 0.02. Figure 2 shows that for

fixed , the errors are smaller when  is close to : they

are in the neighbourhood of 0.025.

l n

n
l

n l l

n l
2
n
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Fig. 2. Mean square error of the prediction as a function of parameters  and  of two linear correctors that use the second ACE
model. 
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Fig. 3. Mean square error of the prediction averaged over parameter  as a function of parameter  of the two linear correctors
that use the (a) first and (b) second ACE models. 
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Figures 4a and 4b show the sections of charts 1 and

2 for  and , respectively; they refer to the

cases where the lowest values of the mean square error

of the prediction were obtained. Since  is fixed, the 

axis of these charts shows the values of parameter .

These charts confirm these conditions for obtain-

ing the smallest errors with a linear corrector with the

proposed replacement. Thus, in the case of using the

metric proximity function, there is no need to experi-

ment with the hyperparameters of the linear corrector

and we can simply take any  and the corresponding

non-extreme value of . And in the case of the proxim-

ity function for arbitrary ordinal features, it is suffi-

cient to consider various values of parameter  and the

corresponding values of  close to n/2.

= 16n = 13n

n x
l

n
l

n
l
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Let us now study how the work of the two described
versions of the linear corrector depends on the main
parameter . This dependence was shown in Figs. 3a
and 3b, which illustrate nonmonotonic functions.
However, we can clearly see the minima that can be
found by dividing the set of targets of the training sam-
ple into different numbers of intervals.

3.3. Comparison of the Proposed Model 
with the Well-Known Methods

Let us compare the results of the work of the two
versions of linear correctors with the results obtained
using the well-known methods and approaches of data
analysis. Table 1 shows various mean square errors of
the prediction.

n

ol. 30  No. 1  2020
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Fig. 4. Mean square error of the prediction as a function of parameter  of the two linear correctors that use the (a) first ACE
model at  and the (b) second one at . 
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The table shows that the proposed version of the
linear corrector is in second place after linear regres-
sion, giving a better result than the rest of the well-
known regression models.

CONCLUSIONS

The main results of this study are as follows:

1. The problem of restoring the dependence from
precedent samples is considered.

2. The degrees of membership are implemented in
the linear corrector model of restoring dependences.

3. Two different ways of determining the proximity
function in the algorithms for calculating estimates as
classifiers are compared: the model with the metric
PATTERN RECOGNIT

Table 1. Mean square errors of the prediction obtained by
linear correctors and various methods of data analysis

Method MSE

Linear corrector with proposed replacement 

+ first ACE model

0.016

Original linear corrector model + first ACE 

model

0.018

Linear corrector with proposed replacement 

+ second ACE model

0.0205

Original linear corrector model + second ACE 

model

0.0207

Linear regression 0.006

Theil-Sen Estimator regressor 0.02

Random Forest regressor 0.019

Decision Tree regressor 0.026
proximity function works slightly better than the
model with the proximity function for arbitrary ordi-
nal features.

4. The results of the original linear corrector
method and the method with the proposed replace-
ment are compared: the proposed model works better.

5. The dependence of the two versions of the linear
corrector on its hyperparameters is studied: the smallest
mean square error of the prediction of the algorithms is

achieved at non-extreme values of parameter .

6. The results of the proposed linear corrector
model are compared with the results obtained using
the well-known data analysis methods: both versions
of the linear corrector work better than most of the
regression models.
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