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Abstract—Compounds of compositions С+4О7 and А+2 О7 that are not yet obtained (A and B
are cations of different elements; C is Si or Ge) with a melilite-type crystal structure are predicted and their
crystal lattice parameters are evaluated. Predicting is based only on data on the properties of elements and
simple oxides. The mean accuracy of predicting is at least 85%. The calculations are performed using scikit-
learn system programs and an information analytical system based on machine learning approaches.
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INTRODUCTION

Compounds of composition С+4О7 and

А+2 О7 (A and B are cations of different ele-
ments; C is Si or Ge) with a crystal structure such as
melilite (space group is P4 (–) 21m, Z = 2) are of inter-
est for the search for new nonlinear optical [1], piezo-
electric [2], and ferroelectric [3] materials, multiferro-
ics [4], etc. [5, 6].

The databases Phases [7] and Bandgap [8] store infor-
mation on 36 melilites of composition С+4О7 and

on 38 melilites of composition А+2 О7. Most of
these compounds are formed in systems with SiO2 and
GeO2.

The purpose of this work is to predict new com-
pounds with a crystal structure such as melilite in sys-
tems of AO–B2O3–SiO2 (GeO2) and AO–BO–SiO2
(GeO2).

FORMULATION OF THE PROBLEM
We found several articles [9–11] the authors of which

tried to find the relationship between the type of crystal
structure of the compounds and the ionic radii (accord-
ing to Shannon) of the components. The stability dia-
gram of melilites of composition С+4О7 in the
space of ionic radii of cations A+2 and B+3 is proposed
in [9]. We analyzed the location of points in the coor-
dinates of the ionic radii of the cations A+2 and B+3;
these points correspond to compounds of composition

С+4О7 with a melilite structure, as well as com-
pounds with a different crystal structure and systems
of AO–BO–SiO2 (GeO2) without the formation of
compounds with the above composition. The analysis
showed that there is a significant intersection of the
regions corresponding to the compounds С+4О7
and systems without the formation of compounds with
this composition. Similar attempts to use the ionic
radii of components A and C to search for regions of
existence of melilites with compositions С+4О7

[10] and А+2 О7 [11] also led to a significant
intersection of regions corresponding to different
classes of substances.

In order to clarify the boundaries of different classes of
compounds with compositions С+4О7 and

А+2 О7 and to increase the accuracy of predict-
ing the possibility of formation and type of crystal
structure of compounds, we tried to expand the set of
properties of components A, B, and C. To search for
multidimensional criteria, we propose to use machine
learning approaches.

EXPERIMENTAL
Calculation Methods

To solve the problem, we developed an information
analytical system (IAS) [12] which combines data-
bases on the properties of inorganic substances and
materials and an information analysis subsystem based
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788 KISELYOVA et al.
on machine learning (precedent based pattern recog-
nition). Procedures for using IAS to search for com-
plex regularities in chemical information and predicting
new inorganic compounds and estimate their proper-
ties included the following steps.

(1) Selection of examples for computer analysis.
(2) Selection of the initial set of component prop-

erties (elements and simple oxides) for the formation
of the desired criteria.

(3) Finding the properties of components and sim-
ple algebraic functions of these properties; these func-
tions would ensure the best separation of various
classes of compounds of the above composition.

(4) Computer analysis of the selected information
with a further selection of criteria separating the
classes of substances in the best way.

(5) The use of the found multidimensional criteria
for predicting compounds that are not yet obtained
and estimating their properties.

Selection of Examples for Computer Analysis
The main source of initial information for com-

puter analysis is the database Phases [7], which is part
of the IAS. One of the problems that significantly
reduces the accuracy of prediction is extremely scarce
information on compounds of predicting composition
with crystal structures other than melilite, as well as on
the systems of AO–B2O3–SiO2 (GeO2) and AO–BO–
SiO2 (GeO2), in which compounds of the above com-
positions are not formed.

Selection of the Initial Set of Component Properties
for the Formation of the Desired Criteria

Information on the compounds is represented in
computer memory in the form of a matrix the rows of
which include a set of parameter values   of the compo-
nents of a particular compound, indicating to which
class this compound belongs. The physical and chem-
ical nature of the studied substances is taken into
account when choosing the initial properties of the
components. Information on the properties of ele-
ments is obtained from the database Elements
(http://phases.imet-db.ru/elements) that we devel-
oped, and information on oxides is obtained from the
database on the properties of simple oxides included in
the IAS. The result of the first two stages is a sample
formed for subsequent computer analysis (learning
sample).

Finding the Properties of the Components Most 
Important for Classification and Simple Algebraic 

Functions of These Properties
A special program [13] included in the IAS is used

to select the properties of the components that are
most important for the separation of different classes
INORGANIC MATE
of substances. Both the initial properties and automat-
ically generated algebraic functions of these properties
are evaluated in the analysis of the learning sample,
which greatly simplifies the subsequent formation of
the desired criteria. However, despite the fact that the
generation of functions is carried out using a set of ele-
mentary algebraic operations on the values   of the
parameters of components, which are the same in
physical sense and dimension, the number of parame-
ters generated in this way often exceeds several hun-
dred and even thousands. In this regard, the selection
of only algebraic functions which are the most import-
ant for classification so that they can be included in
the desired criterion significantly accelerates its for-
mation and often helps to increase the accuracy of pre-
dicting. The result of the programs is to find the
parameters of the components that most separated the
given classes.

Computer Analysis of Selected Information

A set of 15 programs of precedent based pattern
recognition included in IAS [12, 14] is used to search
for criteria for the formation of compounds and crite-
ria for predicting the type of their crystal structure
under normal conditions. The cross-validation proce-
dure, which is described in detail in [14], is used to
assess the accuracy of predicting the formed criteria.
As a result, the best pattern recognition algorithms are
selected for solving this problem. The collective deci-
sion-making procedure based on special programs
[14] included in the IAS is used to formulate a gener-
alized criterion using the advantages of various algo-
rithms. Examination recognition of information about
a given number of substances, the data on which are
randomly selected from learning samples and are not
used in machine learning (at the final stage of predicting,
these control examples are returned to the sample for
analysis), is used to estimate the accuracy of the crite-
ria obtained using these programs.

Predicting of the Formation of Compounds 
Not Yet Obtained

Only data on the properties of the components are
used in predicting new compounds. All predictions are
carried out for the case of atmospheric pressure and
room temperature. The procedure of predicting and
generating a table of predictions is carried out auto-
matically in the IAS. The user specifies only symbol
sets of components.

All these procedures of machine learning and pre-
dicting are carried out separately for compounds of
compositions С+4О7 and А+2 О7.
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COMPUTER-AIDED DESIGN OF COMPOUNDS 789
CALCULATIONS
Compounds of Composition C+4O7

After an expert analysis, information on 38 com-
pounds of composition С+4О7 with the melilite
structure, on 10 compounds with a crystal structure
different from melilite under ambient conditions, and
on 26 systems of AO–B2O3–CO2 in which the com-
pounds of composition A2B2CO7 are not formed are
included in the sample for computer analysis.

Compounds of Composition A+2 O7

Information on 36 compounds of composition
A+2 O7 with a melilite structure, on 10 com-
pounds with a crystal structure different from melilite
under ambient conditions, and on 14 systems of AO–
BO–CO2 in which the compounds of composition
AB2C2O7 are not formed are included in the sample
for computer analysis.

In both tasks, the initial set of parameters of com-
ponents includes the properties of chemical elements
A, B, C, and O: pseudopotential radius (according to
Zunger), ionic radius (according to Shannon), dis-
tances to core and valence electrons (according to
Schubert), ionization energies of the first, second, and
third electrons (E5–E7), the numbers (according to
Mendeleev and Pettifor (M1–M11)), quantum num-
ber (A5), electronegativity (according to Pauling),
Miedema’s chemical potential, melting point and
boiling point, standard entropy, atomization enthalpy,
molar heat capacity, thermal conductivity, etc., as well
as the thermal parameters of the simple oxides AO,
B2O3, and CO2 (melting point (decomposition), stan-
dard entropy, heat of formation, isobaric heat capac-
ity, and isobaric formation potential). There are a total
of 105 values   for each system of A–B–C–O.

RESULTS AND DISCUSSION
Predicting of Melilites of Composition С+4О7

The solution to the task of predicting the possibility of
the formation of compounds С+4О7 allowed us
to conclude that the ratio of Mendeleev’s numbers [15]
of “t-d start right” of element A and “H d-t start right”
of element B (one can see the parameter values in
database Elements http://phases.imet-db.ru/elements)
(M9(A)/M4(B)) and the ratio of the ionization energy of
the second electron of element B to the ionization energy
of the third electron of element C (E7(B)/E5(C)) turned
out to be the most separating classes of compound for-
mation and lack of compound. However, the estima-
tion of predicting accuracy showed that using only
these informative parameters did not allow achieving
higher accuracy than when 105 initial parameters of
elements and simple oxides are included in the sepa-
rating multidimensional criterion. In the latter case,
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the use of a group of neural network learning algo-
rithms, methods of k-nearest neighbors and support
vector machine, and the convex stabilization method for
the collective decision-making procedure made it possi-
ble to achieve predicting with an accuracy of 93.3%.

Next, we predicted compounds of composition
С+4О7 with the structure of melilite under nor-

mal conditions. Analysis of the learning sample
showed that functions such as the ratio of Mendeleev’s
numbers “d-t start right” of element A and “t-d start
right” of element C (M11(A)/M9(C)) and the differ-
ence between the ionization energy of the first elec-
tron of element B and the ionization energy of the
third electron of element C (E5(B)–E7(C)) have the
highest separation ability. In this task, adding the
found informative parameters (M11(A)/M9(C) and
E5(B)–E7(C)) to the initial set of properties of ele-
ments and simple oxides made it possible to achieve
predicting with an accuracy of 100% when applying a
group of algorithms based on the methods of a linear
machine, the formation of logical regularities, support
vector machine, k-nearest neighbors, and training a
neural network, as well as the Bayesian approach for
making a collective decision.

The formed criteria were used to predict the possi-
bility of formation and type of crystal structure under
normal conditions of compounds that are not yet syn-
thesized. Tables 1 and 2 contain part of the results of
comparison of predictions obtained in solving both
classification tasks. The following notation is accepted:
the prediction of compounds with a crystal structure
such as melilite (M); the prediction of compounds with a
crystalline structure other than melilite (A); the predic-
tion of the absence of a compound with composition

Si+4О7 in system AO–B2O3–CO2 (N); empty
cells are discrepancies in the results of comparison of
the predictions of compound formation and the type
of crystal structure. The symbol # indicates previously
studied systems, information about which was used in
the formation of multidimensional criteria.

Predicting of Melilites of Composition A+2 O7

The search for informative features that would
allow the best separation of systems AO–BO–CO2
with and without formation of the compounds of
composition AB2C2O7 under normal conditions
allowed us to find two functions; they are the difference
between the ionization energy of the first electron of ele-
ment A and the ionization energy of the third electron of
element C (E5(A)–E7(C)) and the ratio of the Mende-
leev–Pettifor number of element A and the quantum
number of element B (M5(A)/A5(B)). Both classes are
relatively well separated. Only two substances fall into
other regions (a system CaO–NiO–SiO2 and a com-
pound Pb2ZnSi2O7).
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Table 1. Predicting of the type of crystal structure of com-
pounds with composition Si+4O7

B
A

Be Mg Ca Cu Zn Sr Ba

B M #M N N M M
Al #N #M #N N #M #N
Cr N #N N N M M
Fe N N #N N N #M
Ga N #M N N M #N
Y #M A M N M A
La M A A N A A
Ce M A A N A A
Pr M A M N A A
Nd #M A A N A A
Pm M A M N M A
Sm #M A M N M A
Eu #M M M N N M A
Gd #M M M N M A
Tb #M A M N M A
Dy #M A M N N M
Ho #M M M N N M
Er #M M M N N M
Tm #M M M N N M
Yb #M M N N M
Lu #M M M N N M
Bi N M N N M

+ +2 3
2 2A B

Table 2. Predicting of the type of crystal structure of com-
pounds with composition Ge+4O7

B
A

Be Mg Ca Cu Zn Sr Ba

B M M M N N M M
Al M #M N N #M M
Cr N N N M M
Fe N N M N N #M #M
Ga M M #M N N #M #M
Y #M A A A A A M
La #M A A A A M M
Ce M A A A A A A
Pr #M A A A A A A
Nd #M A A A A M M
Pm M A A A A M M
Sm #M A M A A M M
Eu #M M A A A A A
Gd #M A A A A A A
Tb #M A A A A A A
Dy #M A A A A M M
Ho #M M A A A M M
Er #M M A A A M M
Tm #M M A N M M
Yb #M M M N M M
Lu #M M M N A M M
Bi M M #N N M M

+ +2 3
2 2A B
The most informative parameters for separating
melilites from compounds with other crystal struc-
tures and systems without the formation of a com-
pound with composition A+2 O7 are the Men-
deleev number “d-t start right” of element A
(M11(A)), the difference between the ionization
energy of the second electron of element A and the
ionization energy of the third electron of element C
(E6(A)–E7(C)), and the ratio of the ionization energy
of the first electron of element A to the ionization
energy of the third electron of element C
(E5(A)/E7(C)). However, the analysis shows that the
use of the Mendeleev number M11(A) and the above
informative functions does not make it possible to sep-
arate the stability region of melilites from the regions
of other substances. The compounds Ba2ZnSi2O7 and
Ca2ZnGe2O7 and a system CaO–NiO–SiO2 without
the formation of compound AB2C2O7 fall into the
melilite region. It should be noted that the data on the
crystal structure of Ba2ZnSi2O7 are contradictory. A
publication in 1974 [16] classifies it as melilites, and
later studies [17] indicate a monoclinic structure with
a space group C2/c. The high-temperature crystal

++2 4
2 2B C
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modification of Ca2ZnGe2O7 also has a melilite struc-
ture [18]; however, it transforms into monoclinic poly-
morphs with a decrease in temperature [18].

Tables 3 and 4 contain a part of the results of com-
parison of predictions obtained in solving two classifi-
cation tasks (the formation of compounds and the type
of crystal structure). A group of algorithms including
Fisher’s linear discriminant, voting according to logical
regularities, the method of support vector machine, and
the complex committee method (averaging) for mak-
ing a collective decision is used in predicting. The
resulting classification rule includes only the proper-
ties of the elements. This rule makes it possible to
achieve predicting accuracy of 85%. The notation is
the same as in Tables 1 and 2.

Predicting of Crystal Lattice Parameters of Melilites

Predicting of the crystal lattice parameters of com-
pounds is of great interest for both chemical research
and materials science investigation. Machine learning
methods are widely used to solve this problem. For
example, in [19–22], the crystal lattice parameters of
RIALS: APPLIED RESEARCH  Vol. 11  No. 4  2020
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Table 3. Predicting of the type of crystal structure of com-
pounds with composition A+2 O7

B
A

Ca Sr Ba Eu Pb

Be #M M M M #N
Mg #M #M #A #M #N
Mn #M #M #M #M #M
Fe #M #M #M M #M
Co #M #M #M M M
Ni #N M M
Cu M #M #A M M
Zn #M #M #A M #M
Cd #M #M #M M #N

+ +2 4
2 2B Si

Table 4. Predicting of the type of crystal structure of com-
pounds with composition A+2 O7

B
A

Ca Sr Ba Eu Pb

Be #N #N N N N
Mg #M #M #M M N
Mn M #M #M M M
Fe M #M #M M M
Co M #M #M M M
Ni M M M M M
Cu M M #M M M
Zn #A #M #M M M
Cd M M #M M M

+ +2 4
2 2B Ge

Table 5. Predicting results of the crystal lattice parameters
of melilites with composition A+2 O7 not yet studied

Composition a, Å c, Å Composition a, Å c, Å

Sr2BeSi2O7 7.596 5.138 Pb2FeGe2O7 8.443 5.119
Ba2BeSi2O7 7.777 5.328 Ca2CoGe2O7 7.947 5.161
Eu2BeSi2O7 7.592 5.145 Eu2CoGe2O7 8.188 5.339
Eu2FeSi2O7 8.102 5.150 Pb2CoGe2O7 8.350 5.144
Eu2CoSi2O7 8.010 5.176 Ca2NiGe2O7 7.950 5.139
Pb2CoSi2O7 8.197 4.989 Sr2NiGe2O7 8.164 5.300
Sr2NiSi2O7 8.016 5.146 Ba2NiGe2O7 8.383 5.502
Eu2NiSi2O7 8.012 5.154 Eu2NiGe2O7 8.191 5.317
Ca2CuSi2O7 7.918 4.930 Pb2NiGe2O7 8.353 5.122
Eu2CuSi2O7 8.091 5.087 Ca2CuGe2O7 8.028 5.072
Pb2CuSi2O7 8.278 4.900 Sr2CuGe2O7 8.242 5.234
Eu2ZnSi2O7 7.990 5.182 Eu2CuGe2O7 8.269 5.250
Eu2CdSi2O7 8.260 5.191 Pb2CuGe2O7 8.431 5.056
Eu2MgGe2O7 8.200 5.326 Eu2ZnGe2O7 8.169 5.345
Ca2MnGe2O7 8.069 5.157 Pb2ZnGe2O7 8.331 5.151
Eu2MnGe2O7 8.310 5.335 Ca2CdGe2O7 8.197 5.176
Pb2MnGe2O7 8.472 5.140 Sr2CdGe2O7 8.411 5.337
Ca2FeGe2O7 8.040 5.135 Eu2CdGe2O7 8.438 5.354
Eu2FeGe2O7 8.281 5.313 Pb2CdGe2O7 8.600 5.160

++2 4
2 2B C
orthorhombic perovskites with composition ABO3 not
yet obtained were predicted using the methods of neu-
ral network training and support vector machine.
Using the neural network training and regression on
support vector machine, it was possible to predict the
crystal lattice parameters of cubic and monoclinic
perovskites with composition ABX3 (X is halogen or
oxygen) [23]. The same methods and random forest
learning were used to predic the crystal lattice param-
eters of cubic perovskites of composition ВСО6
[24, 25] and apatites [26–28]. The lattice parameters
and band gap were predicted for compounds of com-
position ABX2 with chalcopyrite structure using neu-
ral network training and various statistical methods
(discriminate analysis, principal component analysis,
etc.) [29].

The crystal lattice parameters of the predicted mel-
ilites were evaluated in several stages.

1. The selection of the initial set of properties of
components (elements and simple oxides) for the for-
mation of learning samples.

Information on the compounds was presented in
the form of a matrix the rows of which included a set
of values   of the component parameters of a particular
compound with the parameter values   “a” or “c” of the
crystal lattice. Taking into account two target parame-
ters (“a” and “c”) and two types of substance compo-
sitions ( С+4О7 and А+2 О7), we have four
matrices for learning and, accordingly, four tasks on
predicting (depending on the type of parameters and
composition of the compounds). The properties of the
elements and simple oxides were chosen as the initial
properties of the components. We also added the most
informative algebraic functions of the initial parame-
ters of the components found as a result of solving the
prediction tasks of the type of crystal structure. As a
result, four learning samples were generated for subse-
quent computer analysis. For melilites with composi-

+2
2A
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tion С+4О7, the learning samples included 37

examples, and for А+2 О7, the learning samples
included 28 examples.

2. Computer analysis of the selected information
and further selection of the best algorithms.
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Table 6. Predicting results of the crystal lattice parameters of melilites with composition C+4О7 not yet studied

Composition a, Å c, Å Composition a, Å c, Å

Mg2B2SiO7 6.737 4.719 Ca2B2GeO7 7.220 4.876
Sr2B2SiO7 7.294 5.028 Sr2B2GeO7 7.382 5.099
Ba2B2SiO7 7.696 5.230 Ba2B2GeO7 7.778 5.312
Sr2Cr2SiO7 8.007 5.146 Ba2Al2GeO7 8.316 5.552
Ba2Cr2SiO7 8.409 5.348 Ca2Cr2GeO7 7.933 4.994
Sr2Fe2SiO7 8.151 5.270 Sr2Cr2GeO7 8.096 5.216
Sr2Ga2SiO7 7.956 5.337 Ba2Cr2GeO7 8.496 5.429
Ca2Y2SiO7 8.231 5.076 Ca2Fe2GeO7 8.078 5.118
Sr2Y2SiO7 8.400 5.287 Be2Ga2GeO7 6.951 4.842
Be2La2SiO7 7.574 4.921 Mg2Ga2GeO7 7.501 5.075
Be2Ce2SiO7 7.541 4.916 Be2Ce2GeO7 7.651 4.952
Be2Pr2SiO7 7.502 4.883 Be2Pm2GeO7 7.577 4.915
Ca2Pr2SiO7 8.447 5.203 Ca2Sm2GeO7 8.454 5.200
Be2Pm2SiO7 7.468 4.879 Sr2Sm2GeO7 8.616 5.423
Ca2Pm2SiO7 8.414 5.199 Mg2Eu2GeO7 8.040 5.076
Sr2Pm2SiO7 8.583 5.410 Ca2Eu2GeO7 8.421 5.186
Mg2Sm2SiO7 7.970 5.043 Sr2Eu2GeO7 8.584 5.408
Ca2Sm2SiO7 8.358 5.142 Ca2Gd2GeO7 8.408 5.184
Sr2Sm2SiO7 8.527 5.352 Sr2Gd2GeO7 8.571 5.406
Mg2Eu2SiO7 7.938 5.029 Ca2Tb2GeO7 8.377 5.151
Ca2Eu2SiO7 8.326 5.127 Sr2Tb2GeO7 8.540 5.373
Sr2Eu2SiO7 8.495 5.338 Mg2Dy2GeO7 7.974 5.039
Mg2Gd2SiO7 7.925 5.027 Ca2Dy2GeO7 8.355 5.149
Ca2Gd2SiO7 8.313 5.125 Sr2Dy2GeO7 8.517 5.371
Sr2Gd2SiO7 8.482 5.336 Mg2Ho2GeO7 7.947 5.024
Ca2Tb2SiO7 8.282 5.092 Ca2Ho2GeO7 8.328 5.134
Sr2Tb2SiO7 8.451 5.303 Sr2Ho2GeO7 8.491 5.357
Ca2Dy2SiO7 8.259 5.090 Mg2Er2GeO7 7.927 5.014
Sr2Dy2SiO7 8.428 5.301 Ca2Er2GeO7 8.308 5.124
Mg2Ho2SiO7 7.845 4.977 Sr2Er2GeO7 8.471 5.347
Ca2Ho2SiO7 8.233 5.076 Mg2Tm2GeO7 7.908 4.993
Sr2Ho2SiO7 8.402 5.286 Ca2Tm2GeO7 8.289 5.103
Mg2Er2SiO7 7.825 4.967 Sr2Tm2GeO7 8.451 5.325
Ca2Er2SiO7 8.213 5.066 Ba2Tm2GeO7 8.846 5.538
Sr2Er2SiO7 8.382 5.276 Mg2Yb2GeO7 7.887 4.989
Mg2Tm2SiO7 7.805 4.946 Ca2Yb2GeO7 8.268 5.099
Ca2Tm2SiO7 8.193 5.044 Sr2Yb2GeO7 8.430 5.321
Sr2Tm2SiO7 8.362 5.255 Ba2Yb2GeO7 8.825 5.534
Ca2Yb2SiO7 8.172 5.040 Mg2Lu2GeO7 7.866 4.981
Sr2Yb2SiO7 8.341 5.251 Ca2Lu2GeO7 8.247 5.091
Mg2Lu2SiO7 7.764 4.934 Sr2Lu2GeO7 8.410 5.314
Ca2Lu2SiO7 8.152 5.033 Ba2Lu2GeO7 8.805 5.527
Sr2Lu2SiO7 8.321 5.243 Mg2Bi2GeO7 7.809 5.315
Ca2Bi2SiO7 8.094 5.366 Ca2Bi2GeO7 8.190 5.425
Sr2Bi2SiO7 8.264 5.577 Sr2Bi2GeO7 8.352 5.647
Mg2B2GeO7 6.839 4.767 Ba2Bi2GeO7 8.747 5.860

+ +2 3
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The complex of linear regression methods included
in the scikit-learn package [30] was used to search for
methods that make it possible to predict the value of
the crystal lattice parameters under normal condi-
tions. Determination coefficient (R2) [31] was used to
estimate the quality of functions formed as a result of
the work of the corresponding programs.

The classical least squares method (linear_
model.LinearRegression algorithm) and the Theil–
Sen method of robust linear smoothing of a set of points
[32, 33] (linear_model.TheilSenRegressor algorithm)
showed very good results (R2 > 0.99). The advantage of
the Theil–Sen method is insensitivity to outliers in the
data, which makes it possible to use it in the case of
noisy or poor-quality initial information. The algo-
rithms which showed the best results were selected to
solve the problem of evaluating the parameters of the
crystal lattice of melilites. The predictions of the crys-
tal lattice parameters of melilites with compositions
A+2 O7 (Table 5) and C+4O7 (Table 6)
were obtained using averaging of the values   found by
these two methods.

CONCLUSIONS

Analysis of the database information on the prop-
erties of inorganic compounds using machine learning
approaches made it possible to predict compounds
that are not yet synthesized with compositions

С+4О7 and А+2 О7 (A and B are cations
of different elements; C is Si or Ge) with a crystal
structure such as melilite. The use of machine learning
methods made it possible to accurately evaluate the
crystal lattice parameters of melilites. Predicting was
based only on data on the properties of chemical ele-
ments and simple oxides.

Predicting compounds with the acentric crystalline
structure of melilite are promising for the search for
new nonlinear optical, piezoelectric, and ferroelectric
materials.
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