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1. Introduction

It is possible to divide the problem of the design of new
materials (including metallic materials) into two parts:
(1) searching for new substances with predefined
properties and (2) development of optimum conditions

for the production and treatment of new materials.
This chapter is devoted, for the most part, to solution
of the first problem and describes the use of computer

program systems, called ‘artificial intelligence’ systems.
The necessity for such a materials design stems from

several reasons. Principal among themare the following:

– most simple binary metal systems are well investi-
gated, but substances based on them no longer
supply the needs of industry;

– searching for and research on new ternary and
higher-order substances, many of which have unique

properties, require considerably more time and
expenditure than do binary systems;

– while searching for new substances and materials
through investigation of all 5� 6� . . . component
alloys, the materials scientists would use, just for
laboratory experiments, practically all the rare

metals of our planet;

– the now common computer design of new machines,
devices, buildings, etc. uses only databases (DBs)1

on properties of existing materials. The further
development of automated design must address the

development of systems for computer design of new
materials with predefined properties;

– science, as with any institution of a human commu-
nity, cannot expand indefinitely. However, the

increasing complication of materials requires either
an increase of expenditures for research, or conver-
sion from an extensive approach to an intensive one;

– the computer design of intermetallic substances is

the most powerful way of speeding materials science
investigations in this area.

At present the search for new inorganic materials is
carried out, for the most part, on the basis of the
experience and intuition of researchers. The problem

of a priori prediction of compounds that have not yet
been synthesized and evaluations of their properties is
one of the most difficult problems of modern materials
science. Here the term ‘a priori prediction’ means

predicting yet unknown substances with predefined
properties from only the properties of constituent
components – chemical elements or more simple com-

pounds. The following methods offer possibilities for
solution of the last problem:

– quantum-mechanical methods (Pettifor, 1983; Shah
and Pettifor, 1993; Chelikowsky et al., 1993; Cohen,
1986, etc.);

– empirical criteria (including two-dimensional dia-
grams) (Darken et al., 1953; Girgis, 1983; Hume-
Rothery and Raynor, 1962; Laves, 1956; Mathias,
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1955; Rabe et al., 1992; Villars, 1995; Vozdvizhenskii,
1975, etc.);

– multi-dimensional classifying rules (Chen, 1988;
Chen et al., 1999; Gulyev and Pavlenko, 1973;

Jackson et al., 1998; Kiselyova, 1987, 1993a, 1993b,
1995, 1997; Kiselyova et al., 1977, 1989, 1998a,
1998b; Kiselyova and Burkhanov, 1987, 1989;

Kiselyova and Kravchenko, 1992; Kiselyova and
Savitskii, 1977, 1979, 1981, 1982, 1983, 1984; Kutolin
and Kotyukov, 1978, 1979a, 1979b; Kutolin et al.,

1978;Manzanov et al., 1987; Pao et al., 1999; Savitskii
et al., 1968, 1977, 1978, 1979, 1980, 1981, 1982a, b,
1990; Savitskii and Gribulya, 1985; Savitskii and
Kiselyova, 1978, 1979, 1983, 1984, 1985; Talanov and

Frolova, 1981;Villars et al., 2001;Vozdvizhenskii and
Falevich, 1973; Yan et al., 1994; Zhou et al., 1989).

These and other approaches are briefly reviewed in
another chapter in this volume by Naka and Khan
who also present their application to the design of

some multiconstituent intermetallics.
The quantum-mechanical approach to calculation of

intermetallic compounds has been the most attractive
for most physical metallurgists using the methods of

modern physics in their researches. However, over the
course of the past half-century the achievements of
quantum mechanics in a priori calculations of compli-

cated intermetallic compounds evoke little enthusiasm,
even among the most ardent followers of this
approach. The low precision of results of calculations

for known phases does not allow prediction of new
substances and, at best, only makes it possible to
explain known facts. This situation strengthens doubts

as to the promise of the quantum-mechanical
approach to the design of new metallic substances.
Moreover, analysis of the results of quantum-mechan-
ical calculations calls into question whether the

differential and integral equations used are adequate
to the complexity of condensed metal systems.
Empirical criteria for classification of known sub-

stances and for the subsequent a priori prediction of
alloys, not yet investigated, are most commonly used
in materials science. There is a common tendency in

empirical sciences, because of the complexity of objects
to be investigated, to substitute classification schemes
for computational models. Some examples are: Laves’
rule (Laves, 1956) for predicting the crystal structure

types of some intermetallic compounds, the Hume-
Rothery criterion (Hume-Rothery and Raynor, 1962)
and Darken–Gurry diagrams (Darken et al., 1953) for

predicting mutual solubility of metals, the Mathias

criterion (Mathias, 1955) for predicting new super-
conductors with the A15 crystal structure type, etc.
(Girgis, 1983; Rabe et al., 1992; Villars, 1995 and

Vozdvizhenskii, 1975). Frequently these rules are
named for their founders and are the result of
labour-intensive analysis of experimental data but are

not a consequence of any theoretical calculations.
Moreover, in most cases theoretical physics cannot
even explain the reason for the successful implementa-

tion of such rules. The principle of the development of
empirical criteria of this type is a search for such
properties of the chemical elements or analytical
functions of these properties which would allow one

to find a one- or two-dimensional space, in which it
would be possible to divide known substances into
distinct domains. The advantage of this approach

consists doubtlessly in its simplicity and the ability to
visualize the results with the help of one- or two-
dimensional plots. The essential shortcomings, from

our point of view are the following:

– these criteria quickly lose their reliability when new

data do not easily fit within the framework outlined
by the classification rule;

– the laboriousness of the development of the criteria;

– the criteria do not take into account the whole set of
properties of the chemical elements (or simple
compounds) which determine membership of a given

substance in a certain class, a circumstance that
frequently brings about intersection of classes.

Search for multidimensional classifying rules has
become possible, using computers supplied with
special programs for data analysis. This approach is

a natural evolution of the above-mentioned empirical
approach. The application of computers and programs
to searching for multidimensional regularities in large
volumes of data has allowed sharp reductions in the

time of development of new criteria and revision of old
criteria with the advent of new data. The solution of
the problem of multidimensionality of the experimen-

tal data array to be analyzed is limited primarily by the
progressively higher capabilities of computers and
programs. The advantages of the simplicity in using

one- and two-dimensional criteria became immaterial
once compact computers were developed, which allow
one to instantly predict new substances using multi-
dimensional regularities. The excellent modern com-

puter graphics allows visualization, in accordance with
the user’s desire, of any section or projection of the
multidimensional property space. Thus the classifica-

tion programs expand the investigator’s possibilities
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for solution of the problem of searching for
multidimensional regularities in large volumes of
information. The search for multidimensional rules,

connecting possible formation of compounds and
correlating their properties with the properties of the
chemical elements, is based on the use of databases on

inorganic substances and materials and programs for
searching for complicated regularities.

2. Databases on Inorganic Substances and

Materials Properties

At present thousands of DBs in materials science and
chemistry are in operation in the world (Andersson et
al., 1985; Ansara, 1991; Bale and Eriksson, 1990;

Degtyaryov et al., 1999; Drago and Kaufman, 1993;
Eriguchi and Shimura, 1990; Golikova et al., 1989; Ho
and Li, 1993; Kiselyova et al., 1996; Kravchenko et al.,

1991; Savitskii et al., 1984; STN, 1993; White, 1985;
Yudina et al., 1996; Zemskov et al., 1995, 1998a,b,
etc.). Only a small part of them are confined to purely
bibliographic information, i.e. contain the abstract or

the full texts of publications in a certain subject field as
the basic document entries. However, the total
information content of such bibliographic giants as

the databases of CAS, VINITI, COMPENDEX, etc.,
containing hundreds and even thousands of gigabytes
of data, is highly competitive with the total informa-

tion content of many factual databases on materials,

i.e. those computer-aided systems that contain
information about the properties of substances and
materials. The overwhelming majority of factual DBs

contain information about properties of organic
substances. However, a great number of large data-
bases on metals and other inorganic substances and

materials are maintained in the world. Shown in
Figure 1 is the distribution of databases by subject
scope of the information contained. The majority

include information about thermal, engineering and
physical-chemical properties of inorganic substances
and materials. In recent years the tendency has been
toward cooperation in the development of DBs and the

integration of already developed DBs at national or
international levels including cooperation within the
frameworks of CODATA and UNESCO. This is

because of the opportunities thereby to remove
duplication and to cut down the considerable expenses
for development and maintenance of such databases.

Many DBs are accessible by remote access with the use
of telecommunication networks (Drago and Kaufman,
1993; STN, 1993; Degtyaryov et al., 1999, etc.).

The increase in the number and information content
of DBs on substance and material properties is a
natural tendency of the information age. However, the
use of DBs only for information service does not reflect

the requirements of society for the acceleration of
scientific and technical progress and for the substitu-
tion of expensive experimental investigations by

computer simulations. The problem of information
processing for DBs on the properties of metals and
other inorganic substances is particularly acute. The

attempts to supply these information systems with
programs of thermodynamical calculations, statistics,
and so on (Andersson et al., 1985; Ansara, 1991, etc.),
do not allow good predictions of the properties of

inorganic compounds from ‘first principles’ using only
the information of those databases.
We began to develop DBs on materials and material

properties in the late seventies. By that time it had
become clear that the software of the simplest
information retrieval systems did not lend itself to

subsequent computer simulation and also that this was
an extremely archaic kind of information service. It
has now been made obvious that it is necessary to

develop DBs with complicated structures, directed
towards both computer simulation and information
service. Just such principles were assumed as the basis
of the information systems of inorganic substances and

material properties that we are developing.
The basic ideas, forming the foundation of our

databases, are the following. First, databases are

Computer Design of Materials with AI 813

Figure 1 Distribution of databases on properties of inorganic
substances and materials over subject scope: 1, thermo-
dynamic properties; 2, engineering properties; 3, chemical and
physical-chemical properties; 4, crystallographic and crystal
chemical properties; 5, physical (electrical, magnetic, optical,
etc.) properties; 6, other properties



divided into two classes: DBs containing the most

common information about inorganic substances and
physical-chemical systems, and DBs that include the
most detailed information which was collected and

assessed by experts about industrially vital substances
(Figure 2). A database of the first type is a DB on the
properties of inorganic compounds (Figure 3) contain-
ing information about thermal and crystal chemical

parameters of compounds (Kiselyova, 1993b, 1997;
Kiselyova et al., 1996; Kiselyova and Kravchenko,
1992; Savitskii et al., 1984). Databases of the second

type are, for example, a DB on phase diagrams of
systems with semiconducting phases (Zemskov et al.,
1995, 1998a, b) (Figures 4–6) or a DB on properties of

single crystals of acousto-optical, electro-optical and

nonlinear-optical compounds (Degtyaryov et al., 1999;
Golikova et al., 1989; Kravchenko et al., 1991; Yudina
et al., 1996) (Figure 7). Secondly, we have completely

departed from the philosophy of bibliographic DBs,
whose factual elements for each document are data on
the publication (paper, monograph or handbook) and
in which any information about the substance con-

cerned is added only as supplement. Such a philosophy
increases the time for data retrieval for specific
substances or systems, especially in the case of very

large DBs, and does not provide full relevance (i.e.
extraction of all documents which are appropriate to a
certain request). The basic document of our DBs is
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cumulative information about a particular system or
substance, the key identifiers of which are the symbols
(or atomic numbers) of the chemical elements forming

the system (Figure 2). The references are collected in a
separate DB (or relational table) with consecutive
numbering. The databases (or tables) on the proper-

ties of the compounds (or systems) contain only the
numbers of the references. Thus DBs (or the tables)
on the properties of compounds (or systems) intersect

each other at fields of constituent components (the
quantitative composition of compounds and/or types
of crystal structures) and with databases (or tables) of
the references – at reference numbers. Such a DB

structure optimizes fast data retrieval and preserves
full relevance. These principles are used as the basis

for the following DBs developed and maintained by
us:

1. A DB on the properties of ternary inorganic

compounds ‘PHASES’ (Kiselyova, 1993b, 1997;
Kiselyova et al., 1996; Kiselyova and Kravchenko,
1992; Savitskii et al., 1984) contains the following

information (Figure 3) on more than 39 000
ternary compounds in more than 16 000 systems
including the elements from H(1) to No(102).
Information is extracted from more than 12 000

publications. The retrospective data cover more
than 70 years. The DB has been developed for
IBM PCs operating under MS-DOS. The database

management system (DBMS) is DATAREAL
(Kiselyov, 1991). This DB is popular among
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Figure 3 Structure of database ‘PHASES’ on ternary inorganic compounds



Russian users; therefore development of a new
version of the DB with Internet-access has begun.
Some of the data have been assessed by experts.

Total data assessment by experts is a feature of
DBs on the properties of substances and materials
for electronics, which we began to develop during

the 1990s.
2. A database of phase diagrams of systems with

intermediate semiconducting phases ‘DIAGRAM’

(Zemskov et al., 1995, 1998a, b) contains
information on the most important pressure–
temperature–concentration phase diagrams of
semiconducting systems evaluated by qualified

experts and also on the physical-chemical proper-
ties of the intermediate phases. The figures of the
diagrams are only presented after critical assess-

ment, statistical optimization (using expert eva-
luation of the data of different researchers) or
thermodynamical self-consistency. Figures show

the information that is stored for every binary
system (Figure 4) and every ternary system
(Figure 5); Figure 6 shows the structure of the

DB on references. The DB ‘DIAGRAM’ includes
detailed analytical reviews for each system – mini-
monographs of a sort – that reflect the extent of
investigation of the system. Thermodynamic

parameters and computational models, which
were utilized for thermodynamic self-consistency
or statistical optimization of data of the different

investigators, are stored separately. Apart from
information about semiconducting systems, this
DB contains data about some binary metallic

systems that are constituent parts of ternary
systems with semiconducting phases, and also
data about crystal structure of the chemical
elements. The database of phase diagrams now

contains information on several tens of semi-
conducting systems. Data retrieval is carried out
by dialog-based menus and screening forms.

Updating of the database is carried out every
month. This DB has been developed for the IBM
PCs operating under MS-DOS (DBMS=DA-

TAREAL). We also developed a new Internet-
version of this DB.

3. A database of crystals with significant acousto-,

electro- and nonlinear-optical properties,
‘CRYSTAL’ (Degtyaryov et al., 1999; Golikova
et al., 1989; Kravchenko et al., 1991; Yudina et
al., 1996) contains information on crystals of the

most important substances of this class as
evaluated by experts. The information contained
in the database about the properties of the crystals

is displayed in Figure 7. In addition, the database

includes extensive graphical information about
the properties of the substances. At present data
on several tens of substances are stored in this

database. A version of this DB for Internet-users is
now in the making. In addition to a DB in Russian,
a version in English has also been developed.

3. Application of Artificial Intelligence Methods for

the Analysis of Information from Databases

Doubtlessly databases on the properties of substances

and materials open new avenues for information
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service for specialists. However, it is but one of the

aspects of the new information technology. Rational
use of stored data implies their processing with the
purpose of searching for regularities that could be

applied: to the prediction of new substances with
predefined properties; to the development of the
technology of synthesis of new materials; and to the

prediction of the behavior of materials under the effects
of various factors, i.e. automation of the practice of
materials science.

This problem can be decided easily in those rare
cases where there is a good analytical description of the
regularities to be sought, and the specialist needs only

to insert the necessary information from the database
into one of the chosen models. Among computer-aided
systems of this kind are numerous databases on

thermodynamic properties of substances provided
with programs of thermodynamic calculations:
IVTANTHERMO (Ansara, 1991), THERMOCALC
(Andersson et al., 1985), etc. However, the majority of

materials science problems cannot be formalized with
the application of only those simple algebraic struc-
tures that are used, for example, in thermodynamics.

Prediction of new substances with predefined proper-
ties, interpretation of spectral information, selection of
substances for certain purposes, development of

optimal technological processes for the synthesis of
materials, separation and identification of substances,
etc. belong to this class of intractable problems. All
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these problems are presently solved only from the
experience and intuition of the investigators. One of
the most effective ways to automate these fields is by

the application of the ideas of artificial intelligence and
knowledge bases.
What are the problems that appear with the

intellectualization of materials databases (Gladun,
1995; Gladun and Vashchenko, 1995; Kiselyova, 1997;
Popov, 1987; Pospelov, 1988; Pospelov and Pospelov,

1985; Zagoruiko, 1999)? First, it is necessary that the
computer understand the professional language and
the statement of the problem of the user, i.e. the
intelligent system should have two sorts of knowledge:

knowledge of language and knowledge of the field in
which the user works. Knowledge of the first sort is
realized at the level of a conversational, or linguistic

processor. It can be a system of special programs or a
complex including both hardware and software. As a
rule, the knowledge of language is stored directly in the

conversional processor. The knowledge about the
subject field is stored in a special knowledge base.
The terms ‘knowledge’ and ‘knowledge base’ as

applied to computer information appeared in the 1970s
during the development of artificial intelligence sys-
tems. What are the distinctions between ‘data’ and
‘knowledge’? Data are values used for solution of

problems and metadata (Westbrook and Grattidge,
1991a) for descriptions of objects, situations, phenom-
ena, and connections between objects. Knowledge is

information about the processes of solution, the
regularities which, applied to data, generate new
information (Gladun, 1995). Particular features, dis-

tinguishing knowledge from data in connection with
their representation in computers (Pospelov, 1988;
Pospelov and Pospelov, 1985), are the following:
interior interpretability which makes it possible for

the computer to ‘understand’ the information to be
input at a substantial level; availability of structure
which provides a computer with the ability to form a

hierarchy of concepts, to introduce new generalized
concepts and to decompose concepts into constituent
subconcepts and the relations between them; avail-

ability of connections that provides a computer with the
possibility of including the connections not only
between concepts but also between the facts, processes

and phenomena; activity is the feature that relates the
computer to homo sapiens and is connected with
actions leading to a realization of procedures that
can be useful for the solution of certain problems (for

example, the detection of a contradiction between the
prediction and an experimental fact becomes the
stimulation for overcoming it and forming new

knowledge). It is, however, impossible to demark an
accurate division between knowledge and data. For
example, interpretability is inherent to relational

databases, and structuring is an integral part of all
modern DBs. But availability of connections and
activity have no parallel in a methodology of DBs.

Secondly, it is important to have a system that
converts the description of a source problem into a
running program. A complex of software for the

solution of this problem is called a program scheduler,
or simply, a scheduler. During its work the scheduler
continually contacts the knowledge base, getting from
the base the knowledge of the application domain, the

methods for solution of tasks, and information about
the possibility of an automated combination of
programs from some of the basic programs which are

stored in the knowledge base. A special system named
the monitor realizes a control by interaction of all
subsystems. The complex of conversational processor,

knowledge base, scheduler, and monitor forms the
intelligent interface of the computer (Pospelov, 1988;
Pospelov and Pospelov, 1985).

Expert systems are the most widespread kind of
artificial intelligence systems. They date back about 20
years and are intended to solve very complicated
problems in particular application domains with the use

of large volumes of special knowledge of a high quality.
The latter are extracted from various sources, namely:
books, papers, scientific and technical documents,

domain experts, etc. Such knowledge also includes
some procedures, strategies, empiric regularities, and
so on. This knowledge is represented in a special

manner and is stored in the knowledge base. It will be
noted that expert systems use models based on special
formalisms of artificial intelligence (Gladun, 1995;
Gladun and Vashchenko, 1995; Popov, 1987; Pospe-

lov, 1988; Pospelov and Pospelov, 1985; Zagoruiko,
1999). Unfortunately, many developers don’t take this
aspect into consideration. These developers use the

fashionable term expert system for the definition of
their program systems that use a conversational mode
similar to the natural language. True expert systems

are artificial intelligence systems that use knowledge
represented as rules, frames, or semantic networks
(Gladun, 1995; Gladun and Vashchenko, 1995; Popov,

1987; Pospelov, 1988; Pospelov and Pospelov, 1985;
Zagoruiko, 1999). A particular feature of expert
systems is a subsystem of explanations that is a
constituent part of these systems. It controls the

work of the scheduler and describes its functioning in
a condensed form that is convenient for the specialist.
It fosters trust in the work of the intelligent system and
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answers for the user the questions ‘How?’ and ‘Why?’
one or another solution is accepted as an alternative
choice.

A particular feature of artificial intelligence systems
is an ability for automatic searching for regularities
and use of them for prediction. Thus expert systems

are systems with ‘poor’ intelligence because they use
only those regularities (knowledge) which are extracted
from the experts. As our experience shows, any

attempt to extract rules, connecting the formation of
a certain compound to the properties of its constituent
elements, from chemists or physical metallurgists have
been unsuccessful, because they prefer only to estimate

the authenticity of data concerning the existence of the
given compound or the values of the particular
properties of the phase. While formulating the specific

features of this application domain, we abandoned the
idea of making the chemist or physical metallurgist
outline the rules of the formation of metallic and other

inorganic substances with desired properties and
decided only to make use of their expert assessment
of the data intended for computer learning. It should

be noted that an expert system is a passive system that
is not capable of obtaining new regularities or of
searching for contradictions between knowledge and
the facts. This circumstance, in combination with the

difficulties of the extraction of knowledge from the
experts, were the reasons for prior failures of the
development of expert systems in physical metallurgy

and inorganic materials science. Further development
of intelligent systems requires a removal of these
restrictions and realization of what are called, partner

systems (Zagoruiko, 1999).

4. Information-Predicting System for the Design of

New Inorganic Substances

The A. A. Baikov Institute of Metallurgy and
Materials Science of the Russian Academy of Sciences
is now making a version of a partner system – an

information-predicting, computer-aided system. This
system is intended for data retrieval on known
compounds, the prediction of hypothetical inorganic

compounds, not yet synthesized, and the forecasting of
their properties. This system includes a prediction
subsystem based on an artificial intelligence method –
the method of concept formation by a growing

network CONFOR (Gladun, 1995; Gladun and
Vashchenko, 1995). Apart from the latter, the infor-
mation-predicting system employs a database of

properties of inorganic compounds as discussed

above, a knowledge base, a conversational processor
and monitor (see Figure 8). The system is developed
for an IBM computer.

The principles of the working of a system of concept
formation, which we use for the prediction of new
intermetallic and other inorganic compounds, are

detailed in Gladun (1995), Gladun and Vashchenko
(1995), and Kiselyova et al. (1998). A distinctive
feature of the system used is a special associative

data structure in the computer memory in the form of
a growing pyramidal network. This ensures a fast search
for regularities in the information contained in the DB
which completely classifies known physical-chemical

systems, data for which are processed by the computer.
During the prediction process the computer receives
only the atomic numbers of the elements or designa-

tions of simple compounds. A brief review of the data
analysis methods from the point of view of their
applicability for searching for rules in the information

in databases on the properties of inorganic substances
and materials is given below (section 4.1).
The knowledge base of the information-predicting

system stores the rules already obtained for various
classes of intermetallic and inorganic compounds for
use in the prediction of phases and to forecast the
phase properties, unless the database has no such

information about the particular physical-chemical
system. Rules in the knowledge base are represented
in the form of growing pyramidal networks or of their

equivalent conjunctive-disjunctive logical expressions.
The conversational processor manages the conversa-

tion of the user, who may have little experience

working with the computer or with the information-
predicting system. It provides an expert in the given
application domain also with a dialog with the
information-predicting system. In the future, the

employment of a linguistic processor in the software
or some software-hardware support can be expected. It
will allow the system to understand the problem-

oriented language of the user.
The monitor controls the computation process and

provides the interface between the functional subsys-

tems as well as telecommunication access to the system.
In addition, the monitor signals whenever new experi-
mental data contradict existing classification rules.

Such contradictions will be eliminated by including the
new data in the computer learning and modifying the
rule in the knowledge base.
The information-predicting system operates as

follows (see Figure 8). The user requests information
about an existing compound of a certain composition.
If data about this phase are stored in the database,
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they can be extracted and used for further studies. If
no information about the compound is stored in the
database, or if the information available is incomplete,

the computer, in response to the user’s request,
determines whether the rule (network) corresponding
to the desired property for a compound of a certain

type is present in the knowledge base. If the phase is
present, the database supplies the appropriate set of
component properties to predict the desired character-

istic. If the knowledge base does not have the desired
rule, then examples for the computer learning process
are searched for in the database. The correctness and
representativeness of these examples are estimated

once more by the user; and, if the sample is found
adequate for computer learning, the learning and
prediction subsystems process them in turn. The

resultant prediction is received by the user, while the
classifying rule thus formed is stored in the knowledge
base. The above example is the simplest of the

problems that can be solved by an information-
predicting system. A more complicated problem
would be, for example, predicting all possible phases

in ternary and multicomponent systems, combined
with the estimation of their properties. Although the
previous problem can be solved by real-time proces-
sing, the latter problem requires much more time.

The principles underlying the information-predict-
ing system as developed at present have been tested
successfully earlier on the prototype system supported

by the BESM-6, second-generation computer
(Kiselyova and Burkhanov, 1989). The employment
of powerful personal computers will make it possible

to build a version of the system that can be operated by
users at large.

4.1 Application of Artificial Intelligence Methods to

Data Analysis

Classical applications of mathematics to natural-science
domains are associated with the calculation of one
parameter of an object or phenomenon from knowledge

of others. Examples are: Ohm’s law, Fick’s law, etc.
Each model of the object is described by some analytical
expression in the form of an equation or set of equations

or inequalities that are approximations to reality.
Models, expressed by formulas, and the use of accurate
computing procedures frequently create an impression
of high-quality models and hence the validity of the

results obtained does not always represent the facts.
More ‘inexact’ from the point of view of the

theoretical physicist, another approach is connected

with a solution of problems with identified models

(Zagoruiko, 1999). In this case the models of processes
or objects to be investigated are known to parametric
accuracy, i.e. sets of the most important features and a

general view of the dependencies between them are
known, but it is necessary to calculate coefficients,
exponents and other parameters, using experimental

data for the behavior of the objects or the course of the
processes. This approach does not ensure comparable
rigour of computations as in the conversion from one

parameter set to another, because assumptions about
the values of unknown parameters and their checking
with available experimental data, connecting input and
target features, are required. However, this approach

gives good results in research on complicated chemical-
technological and metallurgical processes, simulation
of kinetics or diffusion, etc.

The emerging field of cybernetics with its concept of
‘a black box’ has allowed an approach to the solution
of even more complicated problems in which the

investigator has only a set of experimental data with a
description of input and output features, and neither
the form of the models nor the degree of influence of

the input features on the subjects of interest are
known. Such problems are decided most effectively
with various methods of artificial intelligence. The
challenges faced by physical metallurgists, chemists

and technologists include: prediction of the formation
of chemical compounds, evaluation of their properties,
development of models of very complicated, multi-

phase technological processes, etc. From the point of
view, for example, of the theoretical physicist, the
results are not sufficiently rigorously substantiated

from physical theories, nor from the rigor of the
mathematical methods used. Moreover, the models
obtained do not give any possibility to get to the root
of the investigated processes or phenomena. But in the

absence of well-substantiated theoretical methods, an
alternative could be to abandon the offered computa-
tional approach and use only experimental methods;

that is absolutely incorrect under present conditions of
the intensification of scientific research.
By convention, the problem of data analysis by

artificial intelligence methods can be divided into three
parts:

– automatic classification (or pattern recognition
without computer learning);

– computer learning to classify objects (or computer

learning in pattern recognition);

– searching for the most important features for
classification (or conjunctions of sets of feature

values).
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The first problem is formulated as follows: it is
necessary to divide a set of objects, specified by sets of
features, into classes, such that points inside each are

close to one another in feature space.
The algorithms to solve this problem are most

sensitive to violation of the hypothesis of compactness,

the realization of which is a general prerequisite for a
correct solution of each of the three types of problems
listed above. The objects of each class should form

‘compact clusters’ in feature space. The problem of
automatic classification is the following: it is necessary
to determine such clusters and to construct a dividing
hypersurface, the use of which will allow determination

of the membership of objects to the classes found. The
most justified classification of algorithms of pattern
recognition without computer learning is given in the

review by Dorofeyuk (1971). A set of algorithms for an
automatic classification are also reviewed in the
monographs by Arkad’ev and Braverman (1971),

Izerman et al. (1970), and Zagoruiko (1999). The
applications of these methods in materials science and
chemistry include, among the most interesting: auto-

mation of the interpretation of spectra (Jurs and
Isenhour, 1975), refinding Mendeleev’s law (Zagor-
uiko, 1999), a search for components of alloys (Gulyev
and Pavlenko, 1973), etc.

The second problem – computer learning for pattern
recognition – is formulated as follows: let a feature
space be given. It is known that it contains a fixed

number of domains, the boundaries of which are
unknown, and there are no rules for the definition of
membership of a particular point to one or another

domain. In computer learning, the points, which are
sampled randomly from these domains, are entered
into the computer, and possibly relevant information
about their belonging to one or another domain is given.

The purpose of computer learning is the construction of
hypersurfaces which divide not only the points shown
but also all other points belonging to these domains. The

purpose of the consequent prediction consists of an
interpolation and extrapolation of the available data
from a sample of small volume to the entire set. This

problem differs from the previous one only in the rigid
specification of classes. The most successful classification
methods of this kind and examples of algorithms used

are given in the monograph by Zagoruiko (1999).
Algorithms of computer learning are widely applied to
materials science including our investigations aimed at
predicting the existence of new inorganic compounds

and evaluating their properties. Here a specific algorithm
is used: to teach the computer how to process data for
concept formation.

We use the system of computer learning CONFOR
(Gladun, 1995; Gladun and Vashchenko, 1995) that
represents the initial information about known physi-

cal-chemical systems as growing pyramidal networks.
A pyramidal network is an acyclic, oriented graph
having no vertices with one entering arc. If the

processes of concept formation are determined in the
network, then the pyramidal network is designated as a
growing one (Gladun, 1995). The network is built

during the process of input of objects. Each object (a
physical-chemical system or compound) is put in as a
set of values of the component properties with an
indication of the class to which the system belongs.

The nearby values of properties of components are
united into one interval using a special program or the
experience of the researcher. The concept-formation

process consists of the analysis of vertices in the
network that is built and the choice of those vertices
that are the most typical for each class. These vertices

become the checking vertices. The resultant concepts
(classifying regularities) can be stored in computer
memory and printed out or read in the form of learned,

growing pyramidal networks (if the resolution of the
screen allows it) or an equivalent Boolean expression
in which the intervals of values of the component
properties constitute the variables. During the predic-

tion process the computer receives only the atomic
numbers of the elements or designations of simple
compounds. The values of the properties of the

appropriate elements or simple compounds are then
automatically extracted from the DB, substituted into
the growing pyramidal network, and the researcher

can easily obtain the necessary predictions.
The third problem – the selection of the most

important classifying features – has a dual purpose.
First, it is necessary to minimize the initial feature set in

order to reduce the time of data processing using
pattern recognition algorithms and leave only the (most
important) dividing features. Secondly, most practical

problems are aimed at selecting those features which
are the most typical for the given class and distinguish
this class from others. Algorithms of this kind can be

classified into two classes: algorithms of a priori
weighting and algorithms of a posteriori weighting. In
the first case the process of constructing a classifying

regularity is carried out before the evaluation of the
importance of the features, and on the contrary for the
other class. The classification of algorithms to decide
the importance of features is made possible by the type

of criteria of importance for class division.
Our experience in the application of various

methods of artificial intelligence to data analysis
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shows that it is impossible to assess the importance of
an individual feature over the whole range of its values.
As a rule, some feature is of importance for classifica-

tion, only in a certain range and for certain kinds of
substances. In most cases, chemical phenomena are
determined by a set of features and thus, it makes sense

to speak only about the importance of sets of features
over specific intervals. We now explain this final
proposition. Illustrated in Figure 9 is an example of

a two-dimensional map for three classes of objects
designated A, B and C. Separation of objects into
classes is observed only within narrow ranges of the
values of features X1 and X2. The features are not

generally important for the separation of classes, if a
mixture of classes is observed practically everywhere
over the range of their variation. It can be seen in this

example that the features are of importance only
within certain intervals.

5. Prediction of New Intermetallics and Other

Inorganic Compounds Using Artificial Intelligence

Methods

The idea of the application of computer learning
methods to searching for regularities of formation of

binary intermetallic compounds was put forward for
the first time by my colleagues from the Baikov
Institute: E. M. Savitskii and V. B. Gribulya in 1966

(Savitskii et al., 1968). They successfully resolved a
great number of problems of predicting various types
of binary systems (for example, those with full mutual

solubility or with simple eutectics); they predicted the
formation of thousands of binary compounds with
compositions AB, A2B, A3B, etc. and evaluated some

of their properties (type of crystal structure, melting
point, critical temperature of transition to the super-
conducting state, etc.) (Savitskii and Gribulya, 1985;
Savitskii et al., 1968, 1979, 1980, 1981, 1982a, b, 1990)

using simple methods of computer learning in pattern
recognition (Devingtal, 1968, 1971). Data in the
computer memory were represented only by informa-

tion about the distribution of electrons in the energy
levels of isolated atoms of the chemical elements. Even
such a simple description of binary systems allowed the

prediction of new compounds and forecasting of their
properties with an average reliability of more than
90%. Thus the properties of binary systems depend

strongly on the properties of the constituent chemical
elements.
The further development of this approach has

followed two interrelated directions: introduction of
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the complication of the composition of the physical-
chemical system, and the development of newpredicting
systems (Kiselyova, 1987, 1993a, 1993b, 1995, 1997;

Kiselyova et al., 1977, 1989, 1998a, 1998b; Kiselyova
and Burkhanov, 1987, 1989; Kiselyova and Krav-
chenko, 1992; Kiselyova and Savitskii, 1977, 1979,

1981, 1982, 1983, 1984; Manzanov et al., 1987;
Savitskii et al., 1977, 1978, 1979, 1980, 1981, 1982,
1990; Savitskii and Kiselyova, 1978, 1979, 1983, 1984,

1985; Talanov and Frolova, 1981).
Thousands of new compounds and their properties

in ternary, quaternary and more complicated systems
were predicted using this approach. The systems were

described using diverse properties of the chemical
elements (distribution of electrons in the energy levels
of isolated atoms of the chemical elements, ionization

potentials, thermal and thermodynamic properties,
ionic or atomic radii, etc.) and properties of binary
compounds, and also various functions of these proper-

ties (ratios of radii, electronic concentrations, etc.). The
reliability of predictions depended on the algorithm
used, on the correctness of classification of the analyzed

data and how representative they were, and also on a
good choice of properties for the description of certain
classes of physical-chemical systems.
The search for, and development of, effective

predicting systems were aimed at the creation of more
powerful programs capable of analyzing, on the one
hand, very large banks of experimental information,

and, on the other hand, of allowing construction of
multidimensional classification rules under the condi-
tion of small sets. Improvements in electronics allowed

the development of systems with a user-friendly inter-
face, working in real time (Chen et al., 1999; Gladun,
1995; Gladun and Vashchenko, 1995; Pao et al., 1999).
The trend has been a transition from the simplest

algorithms of pattern recognition (Gulyev and Pav-
lenko, 1973; Kutolin and Kotyukov, 1978, 1979a,
1979b; Kutolin et al., 1978; Savitskii et al., 1968;

Savitskii and Gribulya, 1985; Talanov and Frolova,
1981; Vozdvizhenskii and Falevich, 1973) toward more
powerful methods based on the use of neural and

semantic networks (Kiselyova, 1987, 1993a, 1993b,
1995, 1997; Kiselyova et al., 1977, 1989, 1998a, 1998b;
Kiselyova and Burkhanov, 1987, 1989; Kiselyova and

Kravchenko, 1992; Kiselyova and Savitskii, 1977, 1979,
1981, 1982, 1983, 1984; Manzanov et al., 1987; Pao,
1999; Savitskii et al., 1977, 1978, 1979, 1980, 1981,
1982a, b, 1990; Savitskii and Kiselyova, 1978, 1979,

1983, 1984, 1985; Villars et al., 2001; Yan et al., 1994).
However, the most important result of research in

this field is that artificial intelligence methods have

become an operating tool for searching for regularities
in experimental data, and the use of these regularities
for predicting new intermetallic and other inorganic

substances has been achieved. The approach, which
had been developed in the A. A. Baikov Institute of
Metallurgy and Materials Science, now has followers

in different countries. The most powerful groups work
in the Baikov Institute in Russia, in the USAF Wright
Laboratory in Ohio under the leadership of Dr. S. R.

LeClair and in the Institute of Metallurgy of the
Chinese Academy of Sciences and in Shanghai
University under the leadership of Prof. N. Y. Chen.
Let us consider in greater detail the investigations of

the Baikov Institute on predicting ternary intermetallic
compounds. The problem of predicting new substances
with desired properties can be divided into four

consecutive problems:

– prediction of compound formation or non-forma-

tion for ternary systems;

– prediction of ternary compounds of desired compo-
sition;

– prediction of phases with a specific crystal structure

type;

– estimation of quantitative properties of the phase
(critical temperature of transition to the super-
conducting state, homogeneity region etc.).

These problems can be solved sequentially, or any

one of these tasks can be solved separately, as
examples of the complementary classes are added to
the learning set. For example, in the case of predicting

the crystal structure at room temperature and atmo-
spheric pressure for compounds of a desired
composition, it is necessary to include in the learning

set examples of both the formation and non-formation
of the compounds in such systems under these
conditions.
In most cases prediction is carried out for systems at

normal conditions, for example, the prediction of a
phase at ambient pressure and temperature. In order to
predict phases that exist under other conditions (e.g.

high pressure), it is necessary to enter examples of
known compounds that exist at high pressures into the
learning set and add pressure as a parameter.

Unfortunately, a majority of the experimental meas-
urements of compound properties are carried out
under conditions of incomplete equilibrium. In addi-
tion, the determination of the crystal structure of a

given compound is not often undertaken in conjunc-
tion with its phase-diagram investigation. Therefore, it
is not always clear under what conditions a specific

crystal polymorph is stable. Standardization of the
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presentation of data for compound properties is a task
for the future; meanwhile, in extracting examples for
computer learning, we have to run a risk – which is not

always rewarding. Taking into account the dependence
of compound properties on the conditions of synthesis,
it is possible to enter processing parameters for the

production of the substance into the learning set, and
further to predict a method of synthesis which will
enable the target properties to be achieved most

efficiently. Various program versions of this concept
formation method (Gladun 1995, Gladun and Vash-
chenko 1995) were used in the calculations to be
mentioned below.

5.1 Prediction of the Formation of Compounds with

Composition ABX2 (X¼S, Se, Te)

The chalcogenides with composition ABX2 are a class
of compounds that is promising for the development of
new semiconducting, electro-optical, acousto-optical,
and other materials for electronics.

Each system A-B-X (hereafter A and B indicate any
chemical elements) was represented in the computer
memory as a set of especially (Gladun and Vash-

chenko, 1995) coded values of properties of the
components A and B, whose class (formation or
non-formation of a compound with composition

ABX2 in various systems) was chosen as a target
feature. Searches for regularities and predictions were
carried out separately for the systems A-B-S, A-B-Se

and A-B-Te. Based on physical and chemical under-
standing of the nature of substances of this kind, three
sets of component properties were chosen for descrip-
tion of these chalcogenide systems:

1. The distribution of electrons in the energy levels of
the isolated atoms of the chemical elements A andB
and their formal valences in ABX2 compounds.

2. The types of incomplete electronic shells, the
Pauling electronegativities, the covalent radii
according to Bokii and Belov, the formal valences

of the elements A and B in these compounds, and
the enthalpies of formation of appropriate simple
chalcogenides.

3. The covalent radii by Bokii and Belov, the
standard entropies and enthalpies of formation
of appropriate simple chalcogenides.

Regularity classifications and the predictions of the

formation of unknown compounds with composition
ABX2 were obtained separately for each of the three
sets of properties of the constituent components. From

such a dichotomy, the method of Gladun (1995) and

Gladun and Vashchenko (1995) produces results of
three types: (1) formation of a compound of composi-
tion ABX2 in a system A-B-X is designated in Table 1

by the sign ‘þ’, (2) non-formation of a compound of
composition ABX2 in a system A-B-X under normal
conditions is designated by the sign ‘�’, and (3) in the

event, that the unknown system does not bear
similarities to any of the objects of the learning set,
the prediction is indefinite. On the basis that the

properties of the chemical elements should depend
periodically on their atomic numbers, it is hoped that
the results of the prediction with the use of the various
sets of properties of the elements and of simple

chalcogenides coincide. Failures (empty squares in
tables of the predictions) arose from errors in the
learning sets, unsuccessful coding of the initial properties

of the components (Gladun, 1995; Gladun and Vash-
chenko, 1995), or unsuccessful classification in the
corresponding space of component properties. Failures

can be explained by the fuzzy nature of the concept
‘chemical compound’ or may also be due to the
metastability of compounds under normal conditions.

To improve the reliability of future predictions the
conclusion about the formation of the compound should
be definite only when all three of the feature sets agree.
Shown in Table 1 are some of the predictions of

compounds with the composition ABX2 (Savitskii and
Kiselyova, 1979). In the last two decades 79 predictions
were tested experimentally. Only three predictions,

compounds with compositions CsPrS2, TlEuSe2 and
TlCeTe2, were in error. But, taking into account refined
information about the objects for computer learning (in

particular, the non-formation of compounds with the
specified composition in the systems Cu2Se-B2Se3, where
B ¼ Sc, Y, Tb-Lu, Tl, or Bi), the problem was solved by
re-teaching the computer-aided system of artificial

intelligence using new experimental data. More exact
results are presented in a book (Savitskii et al., 1990). In
this book the prediction of compounds with composi-

tion ABX2 and crystal structure type a-NaFeO2 is given.
In our work (Kiselyova, 1995; Kiselyova et al., 1998) on
a search for new semiconducting and electro-optical

substances, new compounds were predicted for this
composition with chalcopyrite, a- and b-NaFeO2, a-
LiFeO2, and TlSe structures.

5.2 Prediction of the Formation of Compounds with

Composition AB2X4 (X¼S, Se, Te)

The chalcogenides of this composition belong to a

class of compounds that is promising for semi-
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conducting, electro-optical, and other electronic mate-
rials.
Each A-B-X system was input to computer memory

as a set of coded values (Gladun and Vashchenko,

1995) of the properties of components A and B, whose
class (a compound with composition AB2X4, formation
or non-formation in the system) is indicated as the

target feature. As in the previous case (section 5.1) the
search for regularities and the prediction were carried
out separately for systems A-B-S, A-B-Se and A-B-Te.

Based on physical and chemical information on the
nature of compounds of this class, three sets of
component properties were chosen to describe the
chalcogenide systems as listed in section 5.1.

The classifying regularities and predictions of
formation of unknown compounds with composition
AB2X4 were obtained separately for each of the three

sets of component properties. In Table 2 are listed the
predictions of compounds with composition AB2S4

(Kiselyova and Savitskii, 1979) and in Table 3 are
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Table 1 Part of a table illustrating the prediction of compounds with the composition ABX2

X S Se Te

A Li Na K Cu Rb Ag Cs Tl Li Na K Cu Rb Ag Cs Tl Li Na K Cu Rb Ag Cs Tl
B

B # # # # � + # + + + � 7
Al # � + � + � + � � � + � + � � � � � �
Sc # # + � + # + + + + � + � + + + +
Ti � # # # � + � # # + + + + + + + + + + +
V � # + + + + + + + + + � + + + + # +
Cr � � # � � � + � + � + � � � + � + # #

Mn + + + + + + + + + + + + + + + + # +
Fe + � � � � � � � + + # � # � # � + + + � � +
Co + + + + + + + + + + + + + + + + + + +
Ni + # + � + + + + + # + + + # + + + + + # +
Ga � # # � # � # � + + � � + � # � � � � � �
As + � # � + � + � � � � � � � � � $ � �
Y # � # � + # + � # # + � + � + # � �
Rh + + + + + + + + + + + + + + + + +
In # � � � � � � � # # � � + � + � # � # � + �
Sb � � � � � � � � � � � � � � � � � � $ $ � � � �
La # � � � � $ � $ � � $ $ + � + $
Ce # � � � � � # � + � $ + # + � + �
Pr � � � � � � $ + � + � + $ + # + + � + + �
Nd � � � � � + $ + � + � + $ + # + � + �
Pm + + + + + + + + + + + + + 7 + + + + + +
Sm � � � � � � + � + � + � + $ + � + � + �
Eu � � � � � � + � + � + � + $ + � + + + �
Gd � � � � � � + � # � + � + # + � + � � �
Tb � � � � # � + � # � + � + � + # + � + �
Dy � � � � # � + � # � + � + � + # + # � �
Ho � � � � # � + � # � + � + � + # + # � �
Er � � � � # � + � # � + � + � + # + � � �
Tm � � � � # � + � + + + � + � + # + � � �
Yb � � � � # � + � + + + � + � + � + # + �
Lu � � � � # # + � + + + � + � + # + # � �
Tl + + # � � # � + + � � � + + + � � +
Bi � � � � � � � � � � � � � � � � � � � � � � � �
Ac + + + + + + + 7 + + + + + + + 7 + + + 7
Th + + + + + + + + + + + + + + + + + +
Pa + + + + + + + 7 + + + + + + + 7 + + + 7
U + + # + + + + + + + + + + + + +

Designations: +, predicted formation of a compound with composition ABX2; 7, prediction of no formation of a compound
with composition ABX2; �, compound ABX2 is known to be formed and this fact is used in the computer learning process; $,
compound ABX2 is not known to be formed and this fact is used in the computer learning process; #, predicted formation of a
compound with composition ABX2 which is confirmed by experiment; �, predicted formation of a compound with composition
ABX2 which is not confirmed by experiment; empty square, indeterminate result.



some of the predictions of compounds with composi-

tion AB2Te4 (Savitskii et al., 1978). In the last two
decades 43 predictions of sulfide compounds and 39
predictions of telluride compounds were tested experi-
mentally. Only five predictions of complicated sulfides

(predictions of compounds with composition CdAs2S4,
FeNd2S4, FeGd2S4, CuTl2S4, and PbTl2S4) and six
predictions of complicated tellurides (prediction of

compounds with compositions CaR2Te4 (R ¼ La-Nd,
Sm) and Yb3Te4) were in error. More recently it was
decided to reteach the computer system using new

experimental data. More exact results are presented in

the book by Savitskii et al. (1990). Predictions under
normal conditions of compounds with composition
AB2X4 and the crystal structure types Th3P4, CaFe2O4,
NiCr2S4, or spinel are given also. Kiselyova (1995)

reports on the search for new semiconducting and
electro-optical substances; we predicted new com-
pounds of this composition with the structures of

chalcopyrite, spinel, olivine, PbGa2Se4, Yb3S4, Th3P4,
Yb3Se4, CaFe2O4, or NiCr2S4 (at room temperature
and atmospheric pressure).
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Table 2 Part of a table illustrating the prediction of compounds with the composition AB2S4

A Mg Ca Ti V Cr Mn Fe Co Ni Cu Zn Ge Sr Cd Sn Ba Sm Eu Yb Hg Pb Ra
B

Al � � � � � � � � � � � � � � � � # � � � �
Sc � � + + # � � + + + � + � � + � + � + + # +
Ti � � � � � � � + � � � # � +
V � � � # � � � � � � � � � � � +
Cr + + � � � � � � � � � + � � # � + � + � � +
Mn + + # + + + +
Fe � � + � � � � � � � + � +
Co � � + + � + + � � � � + � � + � + + + � + +
Ni � � + + + + � # � + � + � � � + + + � + +
Ga � � � � � � � � � + � � � � � � # � � � �
As + + + + + + + + + + + + # � # � # + # $ �
Y � � + + � � � + + + $ � � � � � � � + � +
Rh $ � � � + + + + + +
In � � � � � � � � � + � � � � � � + � + � � +
Sb � � # + + � � + + � � � � � � # � # � � +
La $ � # $ � � � � � � � # � +
Ce $ � + + $ + + $ � � � � � � � # � +
Pr $ � + + # $ + + + + $ � � � + � � � � # � +
Nd $ � + + + $ � + + + $ � � � + � � � � # � +
Pm 7 + + + + 7 + + + + 7 + + + + + + + + + + +
Sm $ � + + + $ + + + + � � � � + � � � � # �
Eu $ + + + + + + + + + $ + + � + + + � + + + +
Gd $ � + + + $ � + + + $ � � � + � � � � # �
Tb � � + + + � + + + + $ � � � + � � � � # � +
Dy � � + + � � � + + + $ � � � + � � � � # � +
Ho � � + + � � � + + + $ � � � + � � � � # � +
Er � � + + � � � + + + $ # � � + � � � � # �
Tm � � + + � � � + + + � + � � + � � � � # � +
Yb � � # # � � � + + + � + � � + � + � � # � +
Lu � � + + � � � + + + � � � � � � � # �
Tl + + + + � + + + + # + + + + + �
Bi � � $ � � $ � � � � # � # � �
Ac + + + + + + + +
Th + + + + + + + +
Pa + + + + + + + + + + + + + + +
U + + + � + + + + + + + + + + + +

Designations: +, predicted formation of a compound with composition AB2S4; 7, prediction of no formation of a compound
with composition AB2S4; �, compound AB2S4 is known to be formed and this fact is used in the computer learning process; $,
compound AB2S4 is known not to be formed and this fact is used in the computer learning process; #, predicted formation of a
compound with composition AB2S4 which is confirmed by experiment; �, predicted formation of a compound with composition
AB2S4 which is not confirmed by experiment; empty square, indeterminate result.



5.3 Prediction of New Compounds with

Composition AB2X2 (X¼Si or Ge) and Crystal

Structure Type ThCr2Si2

Compounds with crystal structure type ThCr2Si2 are

promising for new magnetic and superconducting
materials.
Each system A-B-X was represented in the computer

memory as a set of especially coded values (Gladun
and Vashchenko, 1995) of the properties of elements A
and B, whose class (a compound of composition
AB2X2 with crystal structure type ThCr2Si2 and

formation or non-formation in the system) is indicated
as the target feature. The searches for classifying
regularities and predictions were carried out separately

for systems A-B-Si and A-B-Ge. Two sets of properties

of elements were chosen for the description of the
systems:

1. The distribution of electrons in the energy levels
of isolated atoms of the chemical elements A and B.

2. The first three ionization potentials, the metal

radii by Bokii and Belov, the standard entropies
of individual substances, the melting points, the
number of complete electronic shells, the number

of electrons in incomplete s-, p-, d- or f-electronic
shells for the atoms of elements A and B.

The classifying regularities and predictions of forma-

tion of unknown compounds of composition AB2X2

with the ThCr2Si2 crystal structure were obtained
separately for each of the two sets of component

properties.
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Table 3 Part of a table illustrating the prediction of compounds with the composition AB2Te4

A Mg Ca Cr Mn Fe Co Ni Cu Zn Ge Sr Cd Ba La Sm Eu Yb
B

Al � + � � � � �
Sc 7 7 + + + + + +
Ti 7 # 7 7 7
Cr # � � � + + + + + + � �
Mn + + + + + + + +
Fe + + +
Co +
Ga � + + � � $ � � �
As 7 $ 7 + 7 + + + # #

Y + # + + + + + + + + + +
Rh + � # + + � � + + + + + + +
In � # + � � $ � � �
Sb + + + + + � + + + # � #

La + � + + + + + + # + # +
Ce + � + + + + + + + + # +
Pr + � + + + + + + + + # +
Nd + � + + + + + + + + # +
Pm + + + + + + + + + + + +
Sm + � + + + # + + + # # +
Eu + + + + + + + + + + � +
Gd + + + + + + + + + + # +
Tb + + + + + + + + + + # +
Dy + # + + + + + + + + # +
Ho + # + + + + + + + + # +
Er + # + + + + + + + + # +
Tm + # + + + + + + + + + +
Yb + # + + + + + + + + # �
Lu + # + + + + + + + + + +
Bi 7 7 O � O �

Designations: +, predicted formation of a compound with composition AB2Te4; 7, prediction of no
formation of a compound with composition AB2Te4; �, compound AB2Te4 is known to be formed
and this fact is used in the computer learning process; $, compound AB2Te4 is known not to be
formed and this fact is used in the computer learning process;#, predicted formation of a compound
with composition AB2Te4 which is confirmed by experiment; �, predicted formation of a compound
with composition AB2Te4 which is not confirmed by experiment; O, predicted absence of a compound
with composition AB2Te4 which is confirmed by experiment; empty square, indeterminate result.



Shown in Table 4 are some of the predictions of
compounds with composition AB2Si2 and structure

type ThCr2Si2 (Kiselyova and Savitskii, 1983), and in
Table 5 are predictions of compounds with composi-
tion AB2Ge2and structure type ThCr2Si2 (Savitskii and

Kiselyova, 1984). Because of the great promise of this
class of crystal phases, these compounds have recently
been studied intensively. An experimental check
showed that out of 79 predictions of silicides checked,

only six were wrong and of 37 predictions of
germanides only five results did not fit our predictions.

5.4 Prediction of New Crystal Phases with Al, Ga

and In

More than 10 years ago we predicted hundreds of new
compounds of aluminum, gallium and indium with
compositions: AB2X, ABX and AB2X2 (X ¼ Al, Ga or
In) and with crystal structures that resemble the

Heusler alloys, TiNiSi (E phase), ZrNiAl, CaAl2Si2
and ThCr2Si2 (Kiselyova and Burkhanov, 1989). We
used the prototype of our information-predicting

system for the first time.
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Table 4 Part of a table illustrating the prediction of the crystal structure type ThCr2Si2 for
compounds with the composition AB2Si2

B Cr Mn Fe Co Ni Cu Zn Ru Rh Pd Ag Os Ir Pt Au
A

Ca + � $ � � � � + + # � + + + �
Sr � � � � � 7 7 � # �
Y � � � � � 7 7 + # + �
Zr + + � � � 7 + +
Ba + � + � � � � + � � � + � + �
La + � � � � � � � # # � + # � �
Ce $ � � � � � � � # � � # + � �
Pr + � � � � # � # + # � + + + �
Nd # � � � � # � � + # � + + � �
Pm + + + + � + + + + + + + + + +
Sm # � � � � # + � + # � + + � �
Eu + + � � � � + + # # � + + � �
Gd # � � � � # + # # � � # � � �
Tb # � � � � # + � # # + # # + �
Dy # � � � � # + � # # + + + � �
Ho # � � � � # + # + # + # + � �
Er # � � � � # + � # # + # # � �
Tm # # � � � # + # + # + + + � +
Yb # � � � � # + � � � � + + � �
Lu # + � � � # + # + # + + + � +
Hf + + $ � �
Ac + + + + + + + + + + + + + +
Th � � � � � � # # # + # # # #

Pa + + + + + + + + + + + + +
U # # # � # # # # + # � # #

Np � � � � � + + + + + + + +
Pu + + + + + + + + + + + + +
Am + + + + + + + + + + + + + +
Cm + + + + + + + + + + + + +

Designations: +, formation of a compound with the crystal structure type ThCr2Si2 is
predicted; 7, formation of a compound with the crystal structure type ThCr2Si2 is not
predicted; �, a compound with the crystal structure type ThCr2Si2 was synthesized and
appropriate information was used in the computer learning process; $, a compound with the
crystal structure type ThCr2Si2 does not exist under normal conditions and this fact was used
in the computer learning process; #, predicted formation of a compound with the crystal
structure type ThCr2Si2 is confirmed by experiment; �, predicted formation of a compound
with the crystal structure type ThCr2Si2 is not confirmed by experiment; �, predicted absence
of a compound with the crystal structure type ThCr2Si2 which is not confirmed by experiment;
empty square, indeterminate result.



Two sets of element properties that had allowed us
to obtain good results in the solution of similar
problems (see section 5.3) were chosen for description
of the systems. Prediction of the regularities of

formation of phases with a definite composition and
crystal structure type were obtained separately for each
of the two sets of component properties. The use

of these regularities has allowed us to obtain two
tables of predictions of new compounds for each
composition and each crystal structure type. Analysis

of these predictions was published by Kiselyova and
Burkhanov (1989).
Table 6 shows some of the predictions of com-

pounds with composition ABAl and crystal structure

type TiNiSi. Of 16 predictions that were checked, all
agreed with the new experimental data. Table 7
contains past predictions of compounds with composi-

tion AB2In and crystal structure type resembling the
Heusler alloys. Out of 22 predictions that were checked
only three were wrong.
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Table 5 Part of a table illustrating the prediction of the crystal structure type ThCr2Si2 for
compounds with the composition AB2Ge2

A Cr Mn Fe Co Ni Cu Ru Rh Pd Ag Os Ir Pt Au
B

Li + +
Na + +
K + + + + + + +
Ca � + � �
V 7 + 7 7 7 7 7 7 7 7 7 7 7 +
Rb 7 + + + +
Sr + � + � �
Y � � � � 7
Nb 7 7 + +
Cs + + 7
Ba + + + + + � +
La + � � � � � # # � + + � � +
Ce + � � � � � # # � # �
Pr + � � � � � # # + + �
Nd + +
Pm + + + + + + + +
Sm + � � � � # # + + �
Eu + # � # # # # # �
Gd + � � � � � # � + + + + � +
Tb + � � + � � # # + + + + � +
Dy + � � � � # # � + �
Ho + � � � � # # # + +
Er + � � � � � # # + + +
Tm + + � � � # # + + +
Yb + � � � � � # # � + +
Lu + + + � � + + + + + + + + +
Hf + + + +
Ta + + + +
Tl + + +
Pb + + +
Bi + + +
Fr + + + + + + + + + + + +
Ra + + +
Ac + + + + + + + + + + + +
Th � � � � � � + � � + + + � �
Pa + + + + + + + + + + + +
U � � � � � � + � � + � � +
Np + # + + + + + + + + + +
Pu + + + + + + + + + + + +
Am + + + + + + + + + + + +
Cm + + + + + + + + + + + +

Designations: see Table 4.



5.5 Prediction of New Heusler Alloys with

Composition ABD2 (D¼Co, Ni, Cu or Pd)

One further successful result of the suggested approach
is a prediction of new cubic Heusler alloys (crystal
structure of the type AlCu2Mn) (Kiselyova, 1987).

Two sets of properties of elements, that yielded good
results for the solution of similar problems of
predicting crystal structure types of intermetallic
compounds (see sections 5.3 and 5.4), were chosen

for description of these systems. The regularities of
formation of Heusler alloys with a definite composi-
tion were obtained separately for each of the two sets

of properties of the components. Use of these
regularities for prediction has allowed us to obtain
two tables of predictions of new compounds with

crystal structure type resembling the Heusler alloys.
The results of comparison of these predictions for each
pair of regularities were published by Kiselyova (1987).

Table 8 shows some of these results for predicting
ABCo2 compounds and Table 9 shows other results for
ABCu2 compounds, which have a crystal structure
type resembling the Heusler alloys. Of the four checked

predictions for compounds with cobalt, all agreed with
the new experimental data. Three predictions of
Heusler compounds with copper, and three predictions

of the non-formation of Heusler alloys in the systems
A-B-Cu, coincided with the new experimental data.
The results that have been shown thus far, in

sections 5.1–5.5 do not exhaust the possibilities for
prediction of new intermetallic compounds with our
approach. The results of prediction of the crystal
structure type of new equiatomic ternary compounds

with composition ABAl (the crystal structure type
ZrNiAl was predicted), ABSi (the crystal structure
types ZrNiAl, PbFCl, or TiNiSi were predicted),

ABGe (the crystal structure types ZrNiAl or TiNiSi
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Table 6 Part of a table illustrating the prediction of the crystal structure type TiNiSi for compounds with the composition ABAl

A La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
B

Ru 7 7 7 7 7 + 7 + + + + + + 7 7
Rh 7 7 7 7 7 + 7 + + + + + + 7 7
Os + + + + + + + + + + + + + + +
Ir # # # # + # + # # # # # # + #

Pt + # # # + � + � � � � � � # �

Designations: +, formation of a compound with the crystal structure type TiNiSi is predicted; 7, formation of a compound with
the crystal structure type TiNiSi is not predicted; �, a compound with the crystal structure type TiNiSi was synthesized and
appropriate information was used in the computer learning process; #, the predicted formation of a compound with the crystal
structure type TiNiSi is confirmed by experiment.

Table 7 Part of a table illustrating the prediction of a crystal
structure type resembling the Heusler alloys for compounds
with the composition AB2In

A Ru Rh Pd Ag Os Ir Pt Au
B

Ti � + � �
Sr +
Y � # �
Zr + + � + + + � �
Nb + + + + + + + +
Tc + + + + + + + +
La + + � # + + + �
Ce #

Pr + + + # + + + �
Nd + + + # + + + �
Pm + + + + + + + +
Sm + + + # + + + �
Eu + + + + + + + +
Gd + + # # + + + +
Tb + + + # + + � �
Dy + + # # + + + �
Ho + + + # + + � �
Er + + # # + + + �
Tm + + # # + + + #

Yb + + + + + + + �
Lu + + # + + + + #

Hf + + � + + + � �
Ta +
Re 7 +

Designations: +, formation of a compound with a crystal
structure type resembling the Heusler alloys is predicted; 7,
formation of a compound with a crystal structure type
resembling the Heusler alloys is not predicted;�, a compound
with a crystal structure type resembling the Heusler alloys was
synthesized and appropriate information was used in the
computer learning process; #, predicted formation of a
compound with a crystal structure type resembling the
Heusler alloys which is confirmed by experiment; �,
predicted formation of a compound with a crystal structure
type resembling the Heusler alloys which is not confirmed by
experiment; empty square, indeterminate result.



were predicted), ABP (the crystal structure types
ZrNiAl or TiNiSi were predicted), ABPd (the crystal
structure ZrNiAl was predicted) are presented in a
paper by Savitskii and Kiselyova (1985). The predic-

tions of the crystal structure type at normal conditions
for complicated pnictides with compositions: ABP and
ABAs (the crystal structures types ZrNiAl, PbFCl, or

TiNiSi were predicted), ABSb (the crystal structure
types MgAgAs (half Heusler phase) or PbFCl were
predicted), ABBi (the crystal structure type MgAgAs

was predicted), AB2P2, AB2As2 and AB2Sb2 (the crystal
structure types CaAl2Si2 or ThCr2Si2 were predicted)
were published in a paper by Kiselyova and

Burkhanov (1987). The predictions of hundreds of
new compounds with various compositions and crystal
structures in chalcogenide systems are presented in the

book by Savitskii et al. (1990). Apart from inter-
metallic compounds, we have also predicted the
formation of thousands of new compounds in the
oxide and halogenide systems A-B-O, A-B-D-O, A-B-

Hal, and A-B-D-Hal. The results of experimental
checking of the predictions are presented in Table 10.
Comparison of the predictions with experimental data,

obtained recently, shows (Table 10) that the average
reliability of the prediction of metal and other
inorganic compounds exceeds 80%. Such a high

accuracy for a priori predictions of new inorganic
compounds has not been attained by any other known
theoretical method.

6. Cybernetical-Statistical Approach to the Design

of New Materials

The search for an optimal technology for the produc-

tion of a material having extreme values of target
parameters is an integral part of the design of new
substances. As already noted (section 5), it is possible

to predict, not only the formation of compounds with
a certain composition and to estimate their properties,
but also to predict the best method of their production.

Just such a sequence: the information system!
the predicting system! the design of multifactorial
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Table 8 Part of a table illustrating the prediction of a crystal
structure type resembling the Heusler alloys for compounds
with the composition ABCo2

A Al Si Ga Ge In Sn Sb Tl Pb
B

Li + +
Be + � + � + + + + +
Mg + +
K + 7 7 7 + 7 7 7
Sc + 7 7 7 # 7 7 7
Ti � # � � + � + + +
V # � � + + � + + +
Cr + + $ +
Fe � $ 7 7 +
Ni 7 7 7 + $ 7 7
Y + 7 + 7 7 7
Zr � + �
Nb � + � �
Mo + + + +
Ru + + + +
Rh + 7 + 7 7 7
Pd + 7 + 7 7 7
Ag + 7 + 7 7 7
Lu + + + + + +
Hf � + # + + � +
Ta � + � + + + +
Au + + + + + +

Designations: $, a compound with a crystal structure type
resembling the Heusler alloys does not exist under normal
conditions and this fact was used in the computer learning
process; see Table 7 for other symbols.

Table 9 Part of a table illustrating the prediction of a crystal structure type resembling the Heusler alloys for compounds with
the composition ABCu2

A Li Be Al K Sc V Cr Fe Co Ni Ga Ge Y Nb Mo Ru Rh Pd Ag In
B

Zn # 7 7 7 7 7 7 7 7
Ga + + + � + + + + + 7 7 +
In + + + # + + + + + + + # + + + + + +
Sn O 7 O 7 7 7 � � � 7 7 7 $ 7 7 7 7 $ �
Lu 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 +
Ta 7 7 7 7 7 7 $ 7 7 $ 7 7 7 7 +
Au 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 $ $ +
Tl 7 7 +
Pb 7 7 O 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 +

Designations: O, predicted absence of a compound with a crystal structure type resembling the Heusler alloys which is confirmed
by experiment; see Tables 7 and 8 for other symbols.



experiments – was used by Savitskii et al. (1982) in a

simplified variant for predicting superconducting Chev-
rel phases of compositionAxMo6S8 and for optimization
of the technology of their synthesis. Any mathematical

optimizing method can be used for the solution of the
latter problem. As a rule we use statistical methods of
the design of multifactorial experiments in our work.

First we predicted new compounds of this kind with
critical temperatures for the transition to the super-
conducting state (Tc) greater than the boiling point of

helium, using for computer learning the information
from the bibliographic database on Chevrel phases.
We predicted a new phase with composition AgxMo6S8

with a Tc above 4.2K. Also, optimal conditions of

synthesis of this phase have been sought using
statistical methods of experimental design. At that
time there was but one production procedure: a single

sintering of the powder elements in an evacuated
quartz ampoule. Tc was the parameter of optimization.
We supposed that the phase AgxMo6S8 had a suffi-

ciently large homogeneity range for cation A, (silver)
as do the majority of Chevrel phases. The silver
content, the annealing temperature and the annealing
time were chosen as independent variables. A very

simple plan using those three factors at two levels each
was chosen from the catalogue of plans for the design
of experiments. The gradient method of Box and

Wilson was selected for reaching the highest Tc. A
maximum Tc, equal to 7.8K, was reached after two
steps consisting of five experiments.

Why are statistical methods for design of multifactor

experiments attractive for chemists and for materials
scientists? In the first place, the number of experiments
for a search for the extremum of a desired property is

reduced sharply, owing to the simultaneous variation
of all the independent variables. Second, the researcher
derives an analytical model that can be used for the

automation of the process. Third, a quantitative
knowledge of the influence of the technological
conditions on the parameters of optimization can be

acquired. Furthermore, a physical-chemical model of
the process can be developed on the base of this
knowledge. And, finally, the series of planned experi-
ments can be carried out by unsophisticated staff.

We have considered a sequential procedure for the
design of new compounds with selected properties,
namely: a database!a predicting system based on

artificial intelligence methods!an optimization of the
technology of synthesis of the predicted compounds.
The predicting of compounds, the forecasting of the

desired property, using information from the database,
and the prediction of the best type for technology of
synthesis can be considered collectively as a strategy
for the search for substances with specified properties.

The intrinsic properties of the chemical elements
and of simple compounds are used to describe
multicomponent physical-chemical systems. The

experimental data for substances (which are similar
to the predicted ones) and for the technology of their
synthesis are analyzed using the computer. Design of
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Table 10 Comparison of predictions with new experimental data

Compounds/Systems Characteristics to be predicted Experimental tests as
of January 2000

Error of prediction
(%)

ABX (X=Se,Te) Compound formation 100 44
ABX2 (X=O,S,Se,Te) Compound formation 337 10
ABX3 (X=O,F,S, Cl,Se,Br,Te,I) Compound formation 420 11
ABX4 (X=O,F,Cl,Br,I) Compound formation 393 5
A2BX2 (X=S,Se) Compound formation 24 9
AB2X4 (X=O,F,S, Cl,Se,Br,Te,I) Compound formation 761 16
A2B2X7 (X=O,S,Se) Compound formation 97 26
A(Hal)27B(Hal) Systems w/ compounds 108 10
AB2X4 (X=O,S,Se,Te) Structure type 381 7
ABX (X=Al,Si,P,Ga,Ge,As,Pd,In,Sb,Bi) Structure type 78 35
ABO3 Perovskite structure 186 13
A2B2O7 Pyrochlore structure 74 15
AB2X2 (X=Al,Si,P,Ge,As,Sb) Structure type 200 8
ABX2 (X=Co,Ni,Cu,Pd) MnCu2Al structure 28 14
AB2X (X=Al,Ga,In) MnCu2Al structure 24 13
Ax(SO4)y–Bz(SO4)w and A(NO3)x–B(NO3)y Compound formation 130 4
ABDO4 Compound formation 28 4

Average=14%



experiments to search for optimal conditions of
synthesis of substances, predicted in stage one, can
be considered as the tactics of the search for new

materials. The researcher uses the technological para-
meters during this stage. The first stage is a theoretical
procedure, but the second one is an active experiment

using a formal plan. In the future these experiments
may be carried out by a robot programmed for the
implementation of the procedures of the design of

multifactorial experiments. We considered an automa-
tion of the search for new substances on the base of
new information technologies. Besides the intellectua-
lization of the scientific work, this approach allows

promotion of the search for new substances with
specified properties.

7. Problems and Perspectives of Computational

Materials Design Using Methods of Artificial

Intelligence

What problems confront the computer design of
metallic and other inorganic substances by artificial
intelligence methods? The most important problem is

the quality of experimental data for computer learning.
The trouble is that the proposed approach eventually
assumes a search of physical-chemical systems for

learning sets and sets of predictions, which have similar
features. If any physical-chemical system from the
learning set has an erroneous character and if the set is

small, then it is quite possible that it will yield
erroneous predictions. Our experience is that the
number of erroneous predictions varies proportionally

with the number of errors in the experimental data
processed, and the reliability of the prediction grows
with an increase of the initial volume of data.
(However, reliability approaches a limit with an

increase in size and improvement in the representa-
tiveness of the learning set.) We use databases
containing extensive volumes of qualitative informa-

tion for overcoming these difficulties. With this aim in
mind, we have developed DBs containing data assessed
by qualified experts. This allows both an increase in

quality and in the volume of the learning sets.
However, it should be noted that an infinity of
knowledge never leads to 100% reliability of predic-
tion. The use of our information-predicting system will

allow the enlistment of a user-expert for an assessment
of data for computer learning. Usually he can solve the
problems of the computer design of substances via

analogs which are well known to the expert.

One of the problems of any computer classification
in inorganic materials science is the search for those
properties of the elements and simple compounds, that

are the most important for separation of physical-
chemical systems into certain classes. This procedure
can hardly be completely formalized, but the system we

use, CONFOR (Gladun, 1995; Gladun and Vash-
chenko, 1995), automatically rejects those properties
that have no importance for the classification process.

The initial set of properties for computer-aided
analysis is prepared by the material scientists, and it
is desirable that the artificial intelligence system
extrapolates information from this representative set

of initial features.
We have achieved good predictions of the qualita-

tive properties of physical-chemical systems: formation

of compounds, their crystal structure type, etc.
However, the problem becomes even more compli-
cated if it is necessary to predict some quantitative

property (e.g., the melting point, homogeneity range,
etc.). The hypothesis of class compactness, based on
methods of computer learning, presupposes that the

different classes are located compactly in the multi-
dimensional feature space and that there are no
intersections between these classes. But we found
some sets of properties whose space occupancy contra-

dicts this hypothesis. The application of cluster
analysis to the exemplar learning set, in combination
with the grouping of features according to a statistical

correlation, allows us to decrease the intersections of
classes, but only slightly, owing to the selection of the
natural threshold values (for a certain learning set) of

the predicted quantitative properties. Note that these
natural threshold values are less a consequence of the
nature of the phases and more a consequence of the set
of examples used for the computer learning method.

These observations are based upon the examples of
learning sets that we have thus far obtained and
investigated.

Therefore, as a consequence of the above interaction
problem, the attempt to predict certain threshold
values that are important for technological applica-

tions, e.g. boiling-point temperatures of helium and
nitrogen for superconducting compounds, is justified
only from a practical standpoint. The error of this

prediction will be high, but it will be possible to predict
(with high reliability) those objects which are widely
spaced in the features space. A priori identification of
these objects by a researcher seems to be a great

problem. One possibility to solve this problem is to
visualize a two-dimensional projection of points, which
correspond to the objects of the learning set, in
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combination with the cluster analysis of objects and
grouping of features according to their statistical
correlations. The algorithms for this system involve

cluster analysis based on the method of potential
functions (Arkad’ev and Braverman, 1971; Izerman et
al., 1970) and the extreme grouping of parameters

(Arkad’ev and Braverman, 1971).
As stated above, the prediction accuracy of quanti-

tative properties depends strongly on the volume and

representativeness of the learning set. Our experience
shows that the number of examples in the learning sets
must be in the hundreds or even in the thousands in
order to have an acceptable estimation of the

quantitative property. The future of this approach,
using DBs and AI methods, is connected with the
development of information-predicting systems. That

is a very expensive and time-consuming procedure.
However, such systems allow us to cut down the time
and expense of a search for and the development of

new materials with specified properties. This kind of
simulation requires DBs containing only ‘good’
information.

Let’s imagine the laboratory of the future. A
materials scientist, who must solve the problem of
searching for new materials with desired properties,
makes a request to the computer to find the necessary

substances. If the set of substances that the researcher
receives from a database does not satisfy the request,
he asks for a prediction of new substances having the

property sought. He chooses the best prediction, from
his point of view, and asks the computer to develop an
optimal plan for the synthesis of the substance to meet

an extreme target property. Such a ‘virtual’ laboratory
is a tool of automation for searching for new
substances on the basis of the use of new information
technologies. The proposed approach will allow us to

speed up considerably the search for new substances
with desired properties.

8. Conclusions

In the process of automating scientific research ranging
from the development of databases to the building of

systems of artificial intelligence, the historical process
of cognition is repeated: from collection and proces-
sing of the empirical source data to the generalization
of the experimental facts. The latter is used as a basis

for constructing scientific theories that reflect the basic
relations and the correlations between the processes
and phenomena studied. Development of an artificial

intelligence system, such as an information-predicting

system, is indicative of the advent of a new type of
modeling of cognitive activity, namely knowledge
engineering. Such modeling will play an important

role in those fields of science and technology where
mathematical simulation and computer-aided experi-
mentation have proven to be inadequate (for example,

in physical metallurgy, chemistry, science of materials,
and the like).
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10. Key Term List

artificial intelligence – an artificial system, usually constructed

on the basis of computer technology, which simulates a

human solution of complicated tasks. It is intended for

perception, processing and storage of information, and

also for forming solutions of problems in an expedient

manner.

class – a set of objects chosen according to some property

(properties).

classification – a separation of objects according to some

essential property (properties).

classification scheme – a set of rules determining a certain

classification.

computer learning (a method of artificial intelligence) – a

process of the modification of the parameters of a

classifying system on the basis of the use of experimental

data with the purpose of improving the quality of the

classification.

concept – a generalized model of some class of objects that

provides for recognizing and generating models of specific

elements of this class.

CONFOR (CONcept FORmation) – a set of software tools

intended for the logical analysis of large volumes of

experimental data (Gladun, 1995; Gladun and Vashchen-

ko, 1995) with the purpose of searching for regularities.

*data – scientific or technical measurements, values calcu-

lated therefrom, observations, or facts that can be

represented by numbers, tables, graphs, models, text, or

symbols and which are used as a basis for reasoning or

further calculation. Note: ‘data’ is a plural form; ‘datum’

is the singular.

feature – a property of a constituent component of the

physical-chemical system.
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*information – a collection of data and facts, so selected,

arranged and interrelated that they give relevance,

coherence and utility within a defined sphere of interest

and are communicable.

information-predicting system – a system intended for data

retrieval on known compounds, prediction of inorganic

compounds not yet synthesized, and the forecasting of

their properties. This system employs a database of

properties of inorganic compounds, a database of element

properties, the system CONFOR, a knowledge base, a

conversational processor and a monitor (Figure 8).

*knowledge – acquaintance or awareness of factual informa-

tion or data together with understanding of their relation-

ships and implications for utilization.

*knowledge base – (1) a collection of interrelated information,

facts, or statements (IEEE 610.12); (2) in artifical

intelligence, a representation of information about human

experience in a particular field of knowledge and data

resulting from solution of problems that have been

previously encountered (ISO per ANSI X3 (modified)).

learning set – a multidimensional array of feature values and a

column vector of the desired property. Each row corresponds

to some physical-chemical system already known, whose

class is indicated by the row position of the column vector.

*metadata – data about data. Consists of descriptors of data

in a database to provide systematic information for users,

application programs, and database management soft-

ware. Metadata may also be manipulated and searched.

object – a physical-chemical system which is described as a set

of property (feature) values of the constituent elements.

physical-chemical system – a system (e.g. compound or solid

solution) which is formed from chemical elements.

prediction – an identification (classification) of a new object

belonging to a certain class in compliance with a fixed

classification scheme.

qualitative property – an object or element property which can

be described as a qualitative concept (e.g. a multi-element

system with compound formation or non-formation of a

crystal structure type, possibility of forming compounds

of desired composition, and so on).

quantitative property – an object or element property which

has a numeric value taken from some continuum (or

quasi-continuum) set of numbers (e.g. melting point,

birefringence, index of refraction, and so on).

set for prediction – a multidimensional array of feature values.

Each row corresponds to some unknown physical-

chemical system, whose class it is necessary to predict.

Note: Terms with an * are from Westbrook and Grattidge

(1991b).
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