Прогнозирование пространственной группы перовскитоподобных соединений состава А^{II}₂В^{III}В'^VО₆

Н. Н. Киселева, В. А. Дударев, А. В. Столяренко, А. А. Докукин, О. В. Сенько, В. В. Рязанов, М. А. Витушко, В. С. Переверзев-Орлов, Е. А. Ващенко

Проведено прогнозирование новых соединений состава А^{II}₂В^{III}В^{-V}О₆, предсказан тип искажения их перовскитоподобной ячейки, пространственная группа и проведена оценка параметров кристаллической решетки прогнозированных соединений. При прогнозировании использовали только значения свойств химических элементов. Программы, основанные на алгоритмах обучения различных вариантов нейронных сетей, линейной машины, формировании логических закономерностей, к-ближайших соседей, методе опорных векторов, показали лучшие результаты при прогнозировании типа искажения перовскитоподобной ячейки. При оценке параметров решетки наиболее точными были программы, основанные на алгоритмах ортогонального согласованного преследования и регрессии автоматического определения релевантности. Точность прогнозов типа искажения перовскитоподобной ячейки была не ниже 74 %. Точность оценки линейных параметров решетки была в пределах ± 0,0120 - 0,8264 Å, а точность для углов β при моноклинном искажении решетки — ± 0,08 – 0,74 град. Расчеты проведены с применением систем, основанных на методах машинного обучения. Для оценки точности прогнозирования использовали экзаменационное распознавание в режиме скользящего контроля для соединений, включенных в выборку для машинного обучения. Прогнозируемые соединения перспективны для поиска новых магнитных, термоэлектрических и диэлектрических материалов.

Ключевые слова: перовскит, параметр кристаллической решетки, прогнозирование, обучение ЭВМ.

DOI: 10.30791/1028-978X-2021-9-5-23

Введение

Перовскитоподобные соединения относятся к числу наиболее изученных неорганических веществ. Это связано с их разнообразными физическими и химическими свойствами: магнитными [1 – 4], термоэлектрическими [4 – 6], диэлектрическими [7, 8], каталитическими [8, 9] и т.д. Их можно использовать и как электродные материалы для топливных элементов [10, 11]. Некоторые перовскиты одновременно сочетают разные свойства [12, 13], что расширяет области их применения. Кристаллическая структура двойных перовскитов — соединений состава A₂BB'O₆ — во многих случаях отличается от идеальной кубической структуры перовскита. Проблема предсказания кристаллической структуры двойных перовскитов в значительной мере связана с определением типа искажений структуры при заданных внешних условиях. Большинство критериев, разработанных для решения этой проблемы, учитывают размеры ионов. Рассмотрим наиболее популярные из таких критериев.

Классическим критерием определения вида искажения перовскитной структуры является фак-

тор толерантности *t*. В случае двойных перовскитов А₂ВВ'О₆ он имеет вид [14]:

$$t = \frac{r_{\rm A} + r_{\rm O}}{\frac{\sqrt{2} \left(r_{\rm B} + r_{\rm B'} \right)}{2} + r_{\rm O}},$$

где $r_{\rm A}$ — ионный радиус для координационного числа 12, $r_{\rm B}, r_{\rm B'}$ и $r_{\rm O}$ — ионные радиусы для координационного числа 6. В соответствии с этим критерием для идеальной кубической структуры значение t близко к 1. При t < 0.77 образуются другие структуры (типа ильменита, корунда и т.д.). Если 0.77 < t < 1, то возможно ромбическое, тетрагональное, моноклинное или ромбоэдрическое искажения. При t > 1 наблюдается гексагональное искажение идеальной перовскитной структуры. Все указанные выше значения фактора толерантности весьма приблизительные и в разных публикациях указаны различные интервалы для разных типов искажений, которые нередко пересекаются. Таким образом, фактор толерантности вряд ли можно рассматривать в качестве надежного правила для предсказания возможных искажений кристаллической решетки двойных перовскитов.

Следует отметить, что наиболее частыми причинами понижения симметрии могут быть поворот (наклон) цепочек октаэдров ВО₆ и В'О₆ или искажение этих октаздров, а также смещение катионов из идеальных позиций. При этом в большинстве случаев понижение симметрии связано с совокупностью нескольких причин. Поворот и наклон цепочек октаэдров обусловливают наиболее часто встречающийся тип искажений в двойных перовскитах. В работе [15] было показано, что в структуре перовскита возможны 23 различные системы наклонов октаэдров. Позже в [16] на основе теоретико-группового анализа было показано, что только 15 таких систем наклонов являются неэквивалентными, и выведены возможные пространственные группы в зависимости от той или иной системы наклонов октаэдрического каркаса. Основываясь на вышеуказанных работах [15, 16], в работе [17] разработана программная система SPuDS (Structure Prediction Diagnostic Software) [17], предназначенная для прогноза типа искажения перовскитной структуры и оценки параметров кристаллической структуры перовскитов состава АВХ₂. Для расчетов использовали значение катион-анионного взаимодействия, в свою очередь, в уравнение для вычисления которого входит расстояние катион-анион, а также эмпирически подбираемые константа и переменная. Следует отметить,

что необходимость подбора последних двух компонент уравнения в значительной степени снижает эффективность предложенного метода. Далее с использованием полученного значения катион-анионного взаимодействия рассчитывали глобальный индекс нестабильности. Последний минимизировался путем изменения наклона октаздров (и положения катиона А). Затем проводили поиск той кристаллической структуры, которая соответствует минимальному значению этого полуэмпирического индекса нестабильности. Если рассчитанный индекс не превышал 0,1, то структура считалась стабильной. При значении выше 0,2 структуру относили к неустойчивой. Параметры решетки могли быть рассчитаны на основе данных о расстоянии В – О и угле наклона октаздров. В [18] система SPuDS была применена для соединений состава А₂ВВ'О₆. Следует отметить, что наклон и искажение октаэдров, а также смещение катионов из идеальных позиций кубического перовскита не исчерпывают всех причин искажения идеальной кубической структуры перовскита. Возможны и другие факторы, например, эффект Яна – Тейлора, изменение валентности, наличие вакансий и т.д. Понятно, что ни фактор толерантности, ни методика, положенная в основу SPuDS, не могут полностью учесть все эти факторы, поэтому в последние годы исследователи обратили внимание на методы обучения ЭВМ, позволяющие на основе анализа информации об уже известных соединениях состава А2ВВ'О6 найти сложные закономерности, связывающие свойства перовскитов с параметрами химических элементов, входящих в состав соединения [19 – 25]. Именно методы обучения ЭВМ позволили не только предсказать новые двойные перовскиты, но и оценить некоторые их свойства, например, энергию образования [19] и термодинамическую стабильность [21], параметры кристаллической решетки [20, 22], ширину запрещенной зоны [23], наклон октаэдров [24]. Особенностью подхода к прогнозированию новых неорганических соединений, основанного на методах обучения ЭВМ, является включение в искомые зависимости широкого набора свойств химических элементов, а не только размерных параметров и данных о распределении зарядов. В большинстве применений методов обучения ЭВМ за счет этого возрастает точность прогнозов. Так как количество известных двойных перовскитов достаточно велико, то снимается и существенное ограничение при использовании этих методов — представительность выборки для обучения ЭВМ. Следует отметить, что при прогнозировании новых неорганических соединений используются только свойства химических элементов.

Методы расчета

Первые прогнозы еще не синтезированных перовскитов состава ABO₃ с использованием методов обучения ЭВМ были получены нами в середине 70-х годов [26]. Сравнение наших результатов с новыми экспериментальными данными показало, что точность прогноза образования соединений этого состава составляла 90 %, а структуры кубического перовскита — 85% [27].

Цель настоящей работы — повысить точность прогнозов типа кристаллической структуры соединений состава $A^{II}_{2}B^{III}B'^{V}O_{6}$ за счет использования коллективов алгоритмов обучения ЭВМ [28].

Дело в том, что ранее при прогнозировании использовали только один из таких методов, например, в [19, 21] это были различные варианты обучения случайного "леса". Даже в тех работах, авторы которых применяли различные алгоритмы [24, 25], окончательное решение по результатам прогнозирования принималось на основе простого голосования по большинству прогнозов с использованием разных методов. В настоящей работе применяли коллективные методы принятия решений о результате прогнозирования, основанные на специальных эвристиках [28], программы которых включены в разработанную нами информационно-аналитическую систему (ИАС) для конструирования неорганических соединений [29]. Сначала независимо применяли различные алгоритмы обучения ЭВМ, включенные в ИАС. Далее автоматически находилось оптимальное коллективное решение с помощью специальных методов-"корректоров" [28]. Создание такого подхода было обусловлено невозможностью предсказать заранее, какой алгоритм обучения ЭВМ будет наиболее эффективен при решении конкретной химической задачи. Применение коллективов алгоритмов позволяет компенсировать возможные недостатки использования одного алгоритма преимуществами других. Как показывает наш многолетний опыт, коллективы алгоритмов обучения ЭВМ в большинстве случаев повышают точность прогнозирования при решении химических задач [30, 31].

Процедура обучения ЭВМ и прогнозирования включает несколько этапов.

1. На первом этапе проводится отбор примеров известных соединений для обучения ЭВМ. Источником информации является интегрированная система баз данных (БД) ИМЕТ РАН по свой-

ствам более 85 тыс. неорганических соединений (http://www.imet-db.ru/), включающая информацию о более 750 соединениях состава А^{II}₂В^{III}В'^VО₆. Отбор примеров — наиболее сложная, длительная и неформализуемая задача, от решения которой во многом зависит точность получаемых прогнозов. В настоящем исследовании сложность формирования обучающей выборки была связана с крайне противоречивой информацией о типе искажения кристаллической структуры идеального перовскита при нормальных условиях для большинства соединений. Например, для соединения Sr₂YSbO₆ указаны разные сингонии при комнатной температуре: моноклинная (пространственная группа P2₁/n [32]) и ромбическая [33]. Двойной перовскит Ва₂SmNbO₆ по данным разных исследователей имеет: тетрагональный тип искажения [34] (пространственная группа І4/т [35]) и моноклинный (пространственные группы Р21/n [36] или I2/m [37]). Одним из путей разрешения неоднозначностей и уменьшения объема анализируемой информации является использование разработанных нами специальных систем определения аномальных объектов, в основу которых положена идея компактности классов неорганических веществ в многомерном пространстве параметров химических элементов [38, 39], которая является следствием Периодического закона. Иными словами, вещества, в состав которых входит близкий по значениям параметров набор элементов, должны быть близки и по кристаллической структуре. Эти программные системы значительно сокращают время анализа экспериментальной информации, указывая эксперту на те вещества, чей опубликованный тип искажения кристаллической структуры не попадает в "свой" класс. Например, один из методов определения веществ, чей набор значений компонентов отличается от наборов таких значений для веществ с той же пространственной группой, сводится к определению величины ошибки экзаменационного распознавания при добавлении информации об оцениваемом веществе в обучающую выборку [38]. Если ошибка возрастает на величину, большую заданной, то этот объект считается аномальным. Естественно, окончательное решение о кристаллической структуре "выпадающего" вещества принимает специалист в предметной области.

2. Отбор параметров химических элементов для включения в искомую закономерность, позволяющую предсказать тип кристаллической структуры соединений, имеет важное значение. Первичный отбор выполняется на основе физико-химических представлений о природе изучае-

мых веществ и с использованием БД по свойствам (http://phases.imet-db.ru/elements). элементов В дополнение специальная программа генерирует алгебраические функции от параметров элементов с помощью набора элементарных алгебраических операций над значениями однотипных по физическому смыслу и размерности параметров. Далее с помощью программы [40], включенной в ИАС, оценивается важность для классификации не только исходных свойств элементов, но и сгенерированных функций. С помощью системы визуализации можно показать любую проекцию точек на плоскость, координатами которой является любая пара отобранных параметров элементов или их функций, что облегчает интерпретацию полученных результатов.

Результатом работы этих двух этапов является матрица (обучающая выборка), каждая строка которой соответствует набору значений свойств элементов, образующих экспериментально исследованное соединение $A^{II}_{\ 2}B^{III}B'^VO_6$ с обозначением пространственной группы, к которой относится это соединение.

3. Для прогнозирования новых двойных перовскитов использовали две разработанные нами системы. С помощью первой информационно-аналитической системы [29] проводили прогнозирование типа искажения кристаллической структуры (пространственной группы). Вторую систему ParIS (Parameters of Inorganic Substances) [41] использовали для оценки параметров кристаллической решетки двойных перовскитов. Подсистема анализа данных ИАС в настоящее время включает 15 программ обучения ЭВМ и 9 программ коллективного принятия решения [29, 30]. Подсистема анализа данных системы ParIS включает 11 программ машинного обучения [41]. При обучении ЭВМ отбирали наиболее "точные" алгоритмы, которые в дальнейшем используются для поиска закономерностей и прогнозирования. Для оценки точности (отношения количества веществ, для которых правильно распознана принадлежность к заданным классам, к общему числу распознаваемых веществ) в ИАС применяли широко используемую процедуру — экзаменационное распознавание со скользящим контролем на материале обучающей выборки, которая подробно описана в [30]. При принятии коллективного решения в ИАС так же выбирали наиболее точный алгоритм, для чего применялось экзаменационное распознавание заданного количества веществ, случайно выбранных из обучающих выборок и неиспользованных в обучении ЭВМ (на завершающем этапе прогнозирования контрольные примеры возвращались в обучающую выборку). Подсистема оценки качества обучения в системе ParIS позволяет оценить среднюю абсолютную (МАЕ — Mean Absolute Error) и среднеквадратичную ошибки (MSE — Mean Squared Error) (при скользящем контроле в режиме LOOCV — Leave-One-Out Cross-Validation), коэффициент детерминации R^2 и т.д., а также построить диаграмму отклонений рассчитанных значений параметров от экспериментальных для веществ, информация о которых использована при обучении ЭВМ.

4. Прогнозирование проводили специальными подсистемами ИАС и ParIS с использованием только значений свойств элементов, входящих в состав прогнозируемого вещества. Сначала с применением ИАС осуществляли прогнозирование принадлежности к наиболее распространенным пространственным группам при комнатной температуре и атмосферном давлении. Эту задачу разбивали на две. Вначале для соединений состава А^{II}₂В^{III}В'^VО₆ проводили многоклассовое прогнозирование принадлежности к девяти из классов: соединениям со структурой идеального кубического перовскита (пр. гр. Pm(-)3m), соединениям с пространственными группами $P2_1/n$, Fm(-)3m, *I2/m*, *Pbnm*, *I4/m*, *R*(–)3, *P*6₃/*mmc*, соединениям со структурой, отличной от приведенных выше, а потом последовательное разделение соединений А^{II}₂В^{III}В'^VО₆ на два класса, например, целевой класс 1 — фазы со структурой идеального кубического перовскита, класс 2 — соединения со структурой, отличной от идеального кубического перовскита. Окончательный результат прогнозирования формировался на основе сравнения прогнозов, полученных при решении всех задач. Если результаты противоречили друг другу, то прогноз считался неопределенным. Далее с помощью системы ParIS для прогнозированных соединений проводили оценку значений параметров кристаллической решетки.

Расчетная часть

После экспертной оценки в выборку для компьютерного анализа для прогноза пространственной группы была включена информация о 216 соединениях состава $A^{II}_{2}B^{III}B'^{V}O_{6}$ с моноклинной структурой (пр. гр. $P2_{1}/n$), 179 соединениях с кубической структурой (пр. гр. Fm(-)3m), 27 соединениях с моноклинной структурой (пр. гр. I2/m), 20 соединениях со структурой идеального кубического перовскита (пр. гр. Pm(-)3m), 19 соединениях с ромбической структурой (пр. гр. Pbnm), 17 соединениях с тетрагональной структурой (пр. гр. *I*4/*m*), 13 соединениях с ромбоэдрической структурой (пр. гр. *R*(–)*3*), 10 соединениях с гексагональной струк-

турой (пр. гр. *P6*₃/*mmc*) и 15 соединениях с кристаллической структурой, отличной от приведенных выше при обычных условиях. Существенная раз-

Таблица 1

Результаты оценки важности для классификации параметров элементов и выбора наиболее точных методов обучения ЭВМ

Table 1

The results of evaluating the importance for the classification of the elements parameters and the choice
of the most accurate machine learning methods

Задача	Наиболее важные параметры элементов	Точность прогнозирования с использованием свойств элементов и наиболее важных параметров, %	Точность прогнозирования с использованием только свойств элементов, %	Выбранные методы обучения ЭВМ
Многоклассовое прогнозирование	A2(B)/M11(A); A4(B')+M7(B); A3(B')/M7(B)	74	74	(линейная машина, логические закономерности, k-ближайших соседей, метод опорных векторов) — голосование по большинству
Прогнозирование соединений с пр.гр. <i>Р6₃/mmc</i>	I8(A)/I8(B')	100	96	(алгоритм вычисления оценок, нейронная сеть, k-ближайших соседей) — голосование по большинству
Прогнозирование соединений с пр.гр. <i>Pbnm</i>	A4(B')/A3(A)	97	99	(линейная машина, многослойный перцептрон, нейронная сеть, метод опорных векторов) — выпуклый стабилизатор
Прогнозирование соединений с пр.гр. <i>I</i> 2/ <i>m</i>	I11(B)*I11(B'); I10(A)/I10(B)	99	99	(нейронная сеть, k-ближайших соседей, метод опорных векторов) — выпуклый стабилизатор
Прогнозирование соединений с пр.гр. 14/m	E8(A)/E8(B')	97	94	(линейная машина, k-ближайших соседей, нейронная сеть) — усреднение
Прогнозирование соединений с пр.гр. <i>Fm</i> (–)3 <i>m</i>	A2(B')+M7(B)	85	83	(линейная машина, нейронная сеть, k-ближайших соседей, метод опорных векторов) — обобщённый полиномиальный корректор
Прогнозирование соединений с пр.гр. <i>P2</i> ₁ / <i>n</i>	A2(B')/M6(A); E7(A)-E7(B'); E6(B)*E7(B')	91	93	(линейная машина, k-ближайших соседей, нейронная сеть, метод опорных векторов) — усреднение
Прогнозирование соединений с пр.гр. <i>Рт</i> (–)3 <i>т</i>	A2(A)/A4(B')	94	98	(нейронная сеть, k-ближайших соседей, метод опорных векторов) — области компетенции
Прогнозирование соединений с пр.гр. <i>R</i> (–)3	A3(B')/M11(A)	94	96	(многослойный перцептрон, k-ближайших соседей, нейронная сеть, метод опорных векторов) — динамический метод Вудса

ница в размерах классов (количество примеров соединений с пр. гр. $P2_1/n$ и Fm(-)3m на порядок больше, чем количество большинства соединений с другими пространственными группами) может иметь следствием более низкую точность прогнозов соединений, относящихся к малочисленным классам.

В исходный набор параметров для прогноза пространственной группы были включены следующие свойства химических элементов А, В и В': псевдопотенциальный орбитальный радиус (по Цангеру), ионный радиус (по Шеннону), расстояния до внутренних и до валентных электронов (по Шуберту), энергии ионизации первого, второго и третьего электронов (Е5-Е7), номера (по Менделееву – Петтифору) (М1-М11 и А1-А4), квантовый номер, электроотрицательность (по Полингу), химический потенциал Мидемы (Е8), температуры плавления и кипения, стандартные энтропия (I11), энтальпия атомизации, теплопроводность (I8), молярная теплоемкость (I10) и т.д. (значения см. http://phases.imet-db.ru/elements). Всего 105 значений параметров элементов для каждого соединения плюс значения разных наиболее информативных для классификации алгебраических функций от исходных параметров, определенных с применением программы [40].

Результаты и их обсуждение

В табл. 1 приведены списки функций от параметров химических элементов, наиболее информативных для прогноза соединений с различными кристаллическими структурами. При решении этих задач проверялось насколько увеличивается точность экзаменационного прогнозирования при добавлении в искомые закономерности этих информативных функций наряду со свойствами элементов. Наилучшие по результатам наборы параметров элементов и алгоритмов, которые в дальнейшем использовали при обучении ЭВМ, выделены полужирным шрифтом. Программы, основанные на алгоритмах обучения различных вариантов нейронных сетей, линейной машины, формировании логических закономерностей, k-ближайших соседей, методе опорных векторов, — показали лучшие результаты в режиме скользящего контроля.

Далее с использованием системы ParIS было проведена оценка значений параметров кристал-

Таблица 2

	Пространственная группа		Коэффициент	Средняя	Средне-
Задача	(Пр. гр.),	Алгоритм	детерминации,	абсолютная	квадратичная
	параметр		R^2	ошибка, МАЕ	ошибка, MSE
1	<i>I</i> 2/ <i>m</i> , <i>a</i>	Elastic Net	0,95	0,0251	0,0018
2	I2/m, b	Orthogonal Matching Pursuit	0,96	0,0486	0,0364
3	I2/m, c	Linear Regression	1,00	0,0677	0,0235
4	$I2/m, \beta$	ARD Regression	0,99	0,7359	3,5439
5	I4/m, a	Ridge	1,00	0,0120	0,0005
6	I4/m, c	Random Forest	0,99	0,0163	0,0007
7	Fm(-)3m, a	ARD Regression	0,81	0,0725	0,0520
8	$P2_1/n, a$	ARD Regression	0,98	0,0181	0,0019
9	$P2_1/n, b$	Convex with loop reduction	0,93	0,0234	0,0013
10	$P2_1/n, c$	Ridge	0,66	0,0438	0,0434
11	$P2_1/n, \beta$	SAND	0,78	0,0794	0,0335
12	$P6_3/mmc, a$	ARD Regression	0,99	0,0201	0,0014
13	$P6_3/mmc, c$	ARD Regression	1,00	0,8264	3,5610
14	Pbnm, a	ARD Regression	0,99	0,1256	0,0562
15	Pbnm, b	Orthogonal Matching Pursuit	0,97	0,1758	0,1934
16	Pbnm, c	Orthogonal Matching Pursuit	0,97	0,3931	0,5264
17	Pm(-)3m, a	Orthogonal Matching Pursuit	0,93	0,0230	0,0076
18	R(-)3, a	SAND	1,00	0,7839	2,4921
19	R(-)3, c	ARD Regression	1,00	0,7411	1,6414

The results of evaluating the accuracy of predicting the parameters of the crystal lattice of compounds of the composition $A_2^{II}B^{III}B^{\prime V}O_6$

Рис. 2. Диаграммы отклонений прогнозируемых параметров решетки от экспериментальных в задачах 11 – 19 (перечень задач см. в табл. 2).

Fig. 2. Diagrams of deviations of the predicted lattice parameters from the experimental ones in problems 11 – 19 (see the list of tasks in Table 2).

лической решетки прогнозируемых соединений. В табл. 2 приведен список алгоритмов, использование которых при экзаменационном распознавании обучающей выборки в режиме LOOCV дало наилучший набор значений параметров MAE, MSE и R^2 . Диаграммы отклонений прогнозируемых параметров решетки от экспериментальных даны

на рис. 1, 2. Следует отметить, что большинство лучших результатов были получены при использовании программ, включенных в систему ParIS [41] и основанных на алгоритмах ортогонального согласованного преследования (Orthogonal Matching Pursuit) и регрессии автоматического определения релевантности (Automatic Relevance Determination

Таблица 3 Table 3

					10
Прогноз параметра а	кристаллической кубическо	й решетки новых	соединений	состава $A_2^{II}B^{III}B^{\prime V}$	D ₆

Corras a, A Corras a, A ID: TP: FM -D301 (attroptim ARD Regression) a, A Ca_2ALUO_ 7,9030 ST_PmUO_6 8,5299 Ba_PmMO_6 8,5261 Ca_GCUO_ 8,1046 Sr_TmUO_6 8,5122 Ba_PmMO_6 8,4351 Ca,GaUO_6 8,0806 Sr_TmUO_6 8,6044 Ba_TDRUO_6 8,3499 Ca,PtUO_6 8,3459 Ba_AIMO_6 7,9331 Ba_TDNO_6 8,3412 Ca,PtUO_6 8,3590 Ba_AIMO_6 7,9331 Ba_TDNO_6 8,4857 Ca_TDUO_6 8,3593 Ba_AIMO_6 7,9099 Ba_TTmVO_6 8,4857 Ca_TDUO_6 8,3573 Ba_2AIOO_6 7,9099 Ba_TTmVO_6 8,4459 Ca_TDUO_6 8,3545 Ba_3CVO_6 8,0404 Ba_3/TWO_6 8,4529 Ca_TDUO_6 8,3545 Ba_3/CVO_6 8,1055 Ba_3/AIMAO_6 8,5334 Ca_TDUO_6 8,2456 Ba_3/CVO_6 8,1055 Ba_3/AIMAO_6 8,5394 Ca_TMUO_6 8,2666	Prediction of the parameter a of the crystal cubic lattice of new compounds of composition $A_2^{II}B^{III}B'^{V}O_6$							
$\begin{split} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Состав	a, Å	Состав	<i>a</i> , Å	Состав	<i>a</i> , Å		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	·	Γ	Ip. гр. <i>Fm</i> (–)3 <i>m</i> (алгор	итм ARD Regress	sion)			
Ca,5cUo ₆ 8,1164 Sr,TbUo ₆ 8,5152 Ba,PmMoO ₆ 8,4351 Ca,GaUO ₆ 8,0806 Sr,TimUO ₆ 8,4477 Ba,PmUO ₀ 8,7044 Ca,YUO ₆ 8,3583 Sr,BiUO ₆ 8,6795 Ba,GdRuo ₆ 8,3499 Ca,PrUO ₆ 8,3692 Ba,AlMoO ₆ 7,9431 Ba,TbWO ₆ 8,51144 Ca,GdUO ₆ 8,3890 Ba,AlWO ₆ 8,0341 Ba,TbWO ₆ 8,51144 Ca,GdUO ₆ 8,3803 Ba,AlRoO ₆ 7,8691 Ba,TmVO ₆ 8,4857 Ca,TbUO ₆ 8,3573 Ba,AlOSO ₆ 7,9699 Ba,TmWO ₆ 8,4439 Ca,PuUO ₆ 8,3545 Ba,AlOSO ₆ 7,9699 Ba,TmWO ₆ 8,4439 Ca,DUO ₆ 8,3545 Ba,AlOSO ₆ 7,9699 Ba,ThWO ₆ 8,4439 Ca,TbUO ₆ 8,3436 Ba,SeVO ₆ 8,2476 Ba,YbWO ₆ 8,6222 Ca,TzUO ₆ 8,3436 Ba,SeVO ₆ 8,2476 Ba,YbWO ₆ 8,5314 Ca,TbUO ₆ 8,3456 Ba,SeVO ₆ 8,2476 Ba,YbWO ₆ 8,534 Ca,TbUO ₆ 8,2666 Ba,YWO ₆ 8,2579 Ba,AmNo ₆ 8,5534 Ca,TbUO ₆ 7,686 Ba,YCO ₆ 8,2579 Ba,AmNo ₆ 8,5015 Sr,AlMO ₆ 7,686 Ba,CO ₆ 8,9467 Ba,AmNo ₆ 8,5015 Sr,AlMO ₆ 7,7586 Ba,CVO ₆ 8,2579 Ba,AmNo ₆ 8,5015 Sr,AlMO ₆ 7,896 Ba,FeVO ₆ 8,1655 Ba,AmNo ₆ 8,5015 Sr,AlMO ₆ 7,896 Ba,FeVO ₆ 8,16156 Ba,AmNo ₆ 8,5015 Sr,AlMO ₆ 7,896 Ba,FeVO ₆ 8,18157 Ba,AmNo ₆ 8,5015 Sr,AlMO ₆ 7,891 Ba,GaOsO ₆ 8,0467 Ba,AmOsO ₆ 8,2177 Sr,VWO ₆ 7,9310 Ba,GaOsO ₆ 8,0875 Pb,ScOa ₆ 8,2217 Sr,VWO ₆ 7,9310 Ba,GaOsO ₆ 8,0875 Pb,ScOa ₆ 8,2317 Sr,MWO ₆ 8,1092 Ba ₂ YWO ₆ 8,4894 Pb,RhNo ₆ 8,2336 Sr,MMO ₀ 8,1092 Ba ₂ YWO ₆ 8,4894 Pb,RhNo ₆ 8,2388 Sr,MMO ₀ 8,0092 Ba ₂ YWO ₆ 8,4894 Pb,RhNo ₆ 8,2388 Sr,MMO ₀ 8,0092 Ba ₂ YWO ₆ 8,4894 Pb,RhNo ₆ 8,2388 Sr,MMO ₀ 8,0092 Ba ₂ YWO ₆ 8,4894 Pb,RhNo ₆ 8,2388 Sr,MMO ₀ 8,0465 Ba,RhVO ₆ 8,2725 Pb,RhBiO ₆ 8,2484 Sr,CaWO ₆ 8,0372 Ba,RhWO ₆ 8,2725 Pb,RhBiO ₆ 8,2488 Sr,ZMNO ₆ 8,0372 Ba,RhWO ₆ 8,2725 Pb,RhBiO ₆ 8,2488 Sr,ZMNO ₆ 8,0808 Ba ₂ PmMo ₆ 8,3599 Pb,AmUO ₆ 8,7750 Sr,GaUO ₆ 8,2155 Ba,IhWO ₆ 8,3599 Pb,AmUO ₆ 8,7750 Sr,GaUO ₆ 8,2155 Ba,IhWO ₆ 8,3599 Pb,AmUO ₆ 8,7750 Sr,ZhRuO ₆ 7,9738 Ba,PmMo ₆ 8,3599 Pb,AmUO ₆ 8,7750 Sr,ZhRuO ₆ 7,9778 Ba,PmMo ₆ 8,3599 Pb,AmUO ₆ 8,6844 Sr,KhWO ₆ 8,08980 Ba ₂ PmMo ₆ 8,3599 Pb,AmUO ₆ 8,7751 Ba,YBNO ₆ 7,9778 Ba,PmMo ₆ 8,4251 Pb,IhOS ₆ 4,0431 Ba,CaMO ₆ 3,9856 Pb,CrMo ₆ 3,9919 Pb	Ca ₂ AlUO ₆	7,9030	Sr ₂ PmUO ₆	8,5299	Ba ₂ PmWO ₆	8,5261		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ ScUO ₆	8,1164	Sr ₂ TbUO ₆	8,5152	Ba ₂ PmMoO ₆	8,4351		
Ca, PUO_6 8,3583 Sr, BIO_6 8,6795 $Ba_{1}GRuO_6$ 8,3499 Ca, $PtUO_6$ 8,4902 Sr, $AmUO_6$ 8,0341 Ba_{2} , $TRuO_6$ 8,3412 Ca, $PmUO_6$ 8,3950 $Ba_{2}AIMO_6$ 7,9431 Ba_{3} , $TRWO_6$ 8,4511 Ca, $GaUO_6$ 8,3803 $Ba_{3}AIMO_6$ 7,9431 Ba_{3} , $TmVO_6$ 8,2033 Ca, $DyUO_6$ 8,3803 $Ba_{4}AIRO_6$ 7,8691 Ba_{1} , $TmVO_6$ 8,2033 Ca, $DyUO_6$ 8,3573 $Ba_{4}AIO_6$ 7,8691 Ba_{3} , $TmVO_6$ 8,2023 Ca, $DyUO_6$ 8,3573 $Ba_{4}AIO_6$ 7,8691 Ba_{3} , $TmVO_6$ 8,2023 Ca, $DyUO_6$ 8,3545 $Ba_{4}AIIO_6$ 8,2124 Ba_{7} , $TmVO_6$ 8,2023 Ca, DuO_6 8,3436 $Ba_{5}SVO_6$ 8,0040 Ba_{1} , $YsVO_6$ 8,1570 Ca, $TmUO_8$ 8,3128 $Ba_{5}SVO_6$ 8,0040 Ba_{1} , $YsVO_6$ 8,4006 Ca, $YbUO_6$ 8,2664 Ba_{2} , YuO_6 8,1055 Ba_{4} , BIO_6 8,8539 Ca, LuO_6 8,2666 Ba_{2} , YWO_6 8,1055 Ba_{4} , $AmNbO_6$ 8,5534 Ca, LuO_6 8,2666 Ba_{2} , YWO_6 8,1055 Ba_{4} , $AmNbO_6$ 8,5096 Sr, $AIMO_6$ 7,7686 Ba_{2} , CUO_6 8,2579 Ba_{4} , $AmNob_6$ 8,5095 Sr, $AIMO_6$ 7,7686 Ba_{2} , CUO_6 8,2579 Ba_{4} , $AmNob_6$ 8,5015 Sr, $AIMO_6$ 7,7686 Ba_{2} , CUO_6 8,2579 Ba_{4} , $AmOO_6$ 8,7789 Sr, $AIMO_6$ 7,7384 Ba_{4} , $ErWO_6$ 8,0875 $Pb_{5}SCOSO_6$ 8,2317 Sr, AUO_6 8,0379 Ba_{4} , $GaCO_6$ 8,0875 $Pb_{5}SCOSO_6$ 8,2317 Sr, $STWO_6$ 8,0465 Ba_{4} , WO_6 8,0290 Pb_{5} , $RIMO_6$ 8,3336 Sr, $MmOS_6$ 7,9213 Ba_{4} , $GaCO_6$ 8,0467 Ba_{4} , $AmUO_6$ 8,3789 Sr, $MmOSO_6$ 7,9213 Ba_{4} , RhO_6 8,0290 Pb_{5} , $RhMO_6$ 8,3336 Sr, $MmOSO_6$ 7,9223 Ba_{4} , $RhMO_6$ 8,0290 Pb_{5} , $RhMO_6$ 8,22818 Sr, $FreWO_6$ 7,9381 Ba_{4} , RhO_6 8,0467 Ba_{4} , $AmOO_6$ 8,4424 Sr, $GaUO_6$ 8,0372 Ba_{4} , RhO_6 8,3499 Pb_{4} , $RhMO_6$ 8,2818 Sr, $FrWO_6$ 8,0372 Ba_{4} , RhO_6 8,3499 Pb_{4} , RhO_6 8,2818 Sr, $FrWO_6$ 8,0372 Ba_{4} , RhO_6 8,3499 Pb_{4} , RhO_6 8,4624 Sr, $GaUO_6$ 8,0465 Ba_{4} , RhO_6 8,3479 Pb_{4} , RhO_6 8,4624 Sr, Sr, NO_6 8,0980 Ba_{4} , $Pm(O_6$ 8,4351 Pb_{4} , MO_6 8,4624 Sr, Sr, NO_6 8,0980 Ba_{4} , $Pm(O_6$ 8,4351 Pb_{4} , RhO_6 8,4624 S	Ca ₂ GaUO ₆	8,0806	Sr ₂ TmUO ₆	8,4477	Ba ₂ PmUO ₆	8,7044		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ YUO ₆	8,3583	Sr ₂ BiUO ₆	8,6795	Ba ₂ GdRuO ₆	8,3499		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ PrUO ₆	8,4692	Sr ₂ AmUO ₆	8,6044	Ba ₂ TbRuO ₆	8,3412		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ PmUO ₆	8,3950	Ba ₂ AlMoO ₆	7,9431	Ba ₂ TbWO ₆	8,51144		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ GdUO ₆	8,3890	Ba ₂ AlWO ₆	8,0341	Ba ₂ HoWO ₆	8,4857		
Ca, by UO, 8, 357.3 Ba, AlOSO, 7,9099 Ba, 1mWO, 8,4439 Ca, HOUG, 8,3545 Ba, AlUO, 8,2124 Ba, TmUO, 8,6222 Ca, ErUO, 8,3436 Ba, SeVO, 8,0040 Ba, YbVO, 8,1570 Ca, TmUO, 8,2666 Ba, WO, 7,952 Ba, Bi, BUO, 8,8539 Ca, LuUO, 8,2666 Ba, VWO, 8,1055 Ba, AmNO, 8,5534 Ca, AmUO, 8,2666 Ba, YWO, 8,1055 Ba, AmNO, 8,5534 Ca, AmUO, 8,2666 Ba, YWO, 8,2837 Ba, AmNO, 8,5596 Sr, AlMO, 7,7866 Ba, CrUO, 8,22579 Ba, AmNO, 8,5006 Sr, AlMO, 7,7866 Ba, FeVO, 7,9140 Ba, AmNO, 8,6006 Sr, AlMO, 7,7856 Ba, FeVO, 7,9140 Ba, AmNO, 8,6006 Sr, AlOS, 7,7354 Ba, FeVO, 8,1576 Ba, AmNO, 8,7789 Sr, ScUO, 8,2513 Ba, GaUO, 8,0875 Pb, ScOSO, 8,2317 Sr, SVUO, 7,9310 Ba, GaUO, 8,3900 Pb, ScUO, 8,5332 Sr, SUO, 8,2513 Ba, GaUO, 8,3900 Pb, ScUO, 8,5332 Sr, MMO, 8,0465 Ba, RHVO, 8,0875 Pb, ScOSO, 8,2317 Sr, SVUO, 8,1092 Ba, YWO, 8,4894 Pb, RhNO, 8,3336 Sr, MmWO, 8,0465 Ba, RHVO, 8,0290 Pb, ScUO, 8,2333 Sr, MmWO, 8,0465 Ba, RHVO, 8,0290 Pb, StUO, 8,2818 Sr, FeWO, 7,9831 Ba, RhWO, 8,2725 Pb, RhBiO, 8,4624 Sr, 2dWO, 8,0372 Ba, RhWO, 8,2470 K, 8,3499 Pb, HolVO, 8,7750 Sr, GaUO, 8,2155 Ba, IaWO, 8,3499 Pb, HolVO, 8,7750 Sr, GaUO, 8,0372 Ba, IbWO, 8,3499 Pb, HolVO, 8,7750 Sr, GaUO, 8,0372 Ba, IbWO, 8,3499 Pb, HolVO, 8,7750 Sr, Sr, MMO, 7,9278 Ba, IbWO, 8,3499 Pb, HolVO, 8,7750 Sr, Sr, MMO, 7,9739 Ba, PmNO, 8,3451 Pb, LUUO, 8,7750 Sr, Sr, MMO, 8,0070 Ba, PrUO, 8,7786 Pb, TmUO, 8,77305 Sr, RhMO, 8,0070 Ba, PrUO, 8,7786 Pb, TmUO, 8,7305 Sr, RhMO, 8,0070 Ba, PrUO, 8,3559 Pb, AmUO, 8,8872 Sr, Sr, NOSO 7,9739 Ba, PmSO, 8,4270 TIP. rP. $M(-)3m$ (arroparm Orthogonal Matching Pursuit) TB, Sr, SRMO, 7,9278 Ba, PmNO, 8,4351 Pb, LuUO, 8,7305 Sr, RhMO, 8,0070 Ba, PrUO, 3,910 Pb, InRO, 3,9090 Ba, GaWO, 3,8673 Pb, CrMO, 3,910 Pb, InRO, 3,9090 Ba, GaWO, 3,965 Pb, CrHO, 3,910 Pb, InRO, 3,9090 Ba, GaWO, 3,9856 Pb, CrHO, 3,9215 Pb, InRO, 3,9909 Ba, GaWO, 3,9856 Pb, CrHO, 3,9173 Pb, InRO, 4,0431 Ba, GaMOO, 3,9691 Pb, CrMO, 3,9245 Pb, InRO, 4,0437 Pb, VRO, 3,9262 Pb, ScHO, 3,9268 Pb, NRO, 3,9277 Pb, InRO, 4,0437 Pb, VRO, 3,9282 Pb, ScHO, 3,9268 P	Ca ₂ TbUO ₆	8,3803	Ba ₂ AlReO ₆	7,8691	Ba ₂ TmVO ₆	8,2003		
Ca, EUQ, Ca, EUQ, Ca, EUQ, Ca, TMUO, 8, 3128 Ba, ScVO, 8, 0040 Ba, YbVO, 8, 1570 Ca, TmUO, 8, 3128 Ba, ScWO, 8, 2476 Ba, YbVO, 8, 4006 Ca, YbUO, 8, 2694 Ba, YRO, 8, 2127 Ba, BHOS, 8, 8539 Ca, LuUO, 8, 2694 Ba, YRO, 8, 1055 Ba, AmNO, 8, 8539 Ca, LuUO, 8, 2696 Ba, YWO, 8, 1055 Ba, AmNO, 8, 8539 Ca, AmNO, 8, 4695 Ba, YUO, 8, 2837 Ba, AmNO, 8, 5005 Sr, AlMO, 7, 7686 Ba, CrUO, 8, 2579 Ba, AmSO, 8, 5005 Sr, AlMO, 7, 7686 Ba, CrUO, 8, 2579 Ba, AmSO, 8, 5005 Sr, AlMO, 7, 7354 Ba, FeVO, 7, 7140 Ba, AmNO, 8, 44765 Sr, 2AlOO, 8, 0379 Ba, GaReO, 8, 0467 Ba, AmUO, 8, 2757 Pb, ScOS, 8, 2317 Sr, 2WO, 8, 2513 Ba, GaOSO, 8, 0467 Ba, AmUO, 8, 2317 Sr, 2WO, 7, 9310 Ba, GaUO, 8, 3300 Pb, ScUO, 8, 5342 Sr, 2WO, 8, 1092 Ba, YWO, 8, 4894 Pb, RhNO, 8, 2336 Sr, MmVO, 8, 0465 Ba, RhVO, 8, 4894 Pb, RhNO, 8, 2336 Sr, MmVO, 8, 0465 Ba, RhVO, 8, 4894 Pb, RhNO, 8, 2388 Sr, JMNO, 7, 9223 Ba, RhMO, 8, 2115 Pb, RhSO, 8, 22818 Sr, FeWO, 7, 9223 Ba, RhMO, 8, 215 Pb, RhSO, 8, 22818 Sr, FeWO, 7, 9223 Ba, RhMO, 8, 215 Pb, RhSO, 8, 22818 Sr, FaMO, 8, 0372 Ba, RhMO, 8, 215 Pb, RhSO, 8, 22818 Sr, GaUO, 8, 0372 Ba, RhMO, 8, 3499 Pb, HOUO, 8, 7750 Sr, GaUO, 8, 2155 Ba, ImWO, 8, 3459 Pb, ZhUO, 8, 77305 Sr, RhWO, 8, 0970 Ba, PmKO, 8, 3451 Pb, ZhUO, 8, 77305 Sr, RhWO, 8, 0970 Ba, PmKO, 8, 3451 Pb, ZhUO, 8, 6844 Sr, RhWO, 8, 0970 Ba, PmKO, 8, 3451 Pb, ZhUO, 8, 6844 Sr, RhWO, 8, 3999 Pb, ZHUO, 8, 8731 Pb, ImWO, 8, 3857 Pb, ZhWO, 8, 3999 Pb, ZHUO, 8, 8872 Sr, 2RhWO, 8, 3451 Pb, ZHUO, 8, 3535 Pb, ZhWO, 8, 3557 Pb, ZhWO, 8, 3557 Pb, ZhWO, 8, 3573 Pb, ZhWO, 8,	Ca_2DyUO_6	8,3573	Ba_2AIOsO_6	7,9099	$Ba_2 \text{TmWO}_6$	8,4439		
Ca ₂ ThUO ₆ 8,3+3.9 Ba ₂ SeVO ₆ 8,000 Ba ₂ 19VO ₆ 8,1370 Ca ₂ ThUO ₆ 8,128 Ba ₂ SeVO ₆ 8,2476 Ba ₂ YbWO ₆ 8,4006 Ca ₂ YbUO ₆ 8,2694 Ba ₂ VRuO ₆ 7,9352 Ba ₂ BiUO ₆ 8,8539 Ca ₂ LuUO ₆ 8,2666 Ba ₂ VUO ₆ 8,1055 Ba ₂ AmNbO ₆ 8,5096 Sr ₂ AlMoO ₆ 7,7686 Ba ₂ CUO ₆ 8,2579 Ba ₂ AmNbO ₆ 8,5096 Sr ₂ AlMoO ₆ 7,7686 Ba ₂ FeVO ₇ 7,9140 Ba ₂ AmWO ₆ 8,6006 Sr ₂ AlOS ₆ 7,7354 Ba ₂ FeWO ₆ 8,1576 Ba ₂ AmO ₆ 8,4765 Sr ₂ AlUO ₆ 8,0379 Ba ₂ GaReO ₆ 8,0467 Ba ₂ AmO ₆ 8,7789 Sr ₂ ScUO ₈ 8,2513 Ba ₂ GaOsO ₈ 8,0467 Ba ₂ AmO ₆ 8,7789 Sr ₂ ScUO ₈ 8,2513 Ba ₂ GaOsO ₈ 8,04875 Pb ₂ ScOsO ₈ 8,2317 Sr ₂ VUO ₆ 7,9310 Ba ₂ GaRO ₇ 8,4089 Pb ₂ ShNbO ₆ 8,3336 Sr ₂ MaWO ₆ 8,0465 Ba ₂ RiVO ₈ 8,0290 Pb ₂ RiNbO ₆ 8,2388 Sr ₂ MaWO ₆ 8,0465 Ba ₂ RiVO ₈ 8,0290 Pb ₂ RiNbO ₆ 8,2898 Sr ₂ MaWO ₆ 8,0465 Ba ₂ RiVO ₈ 8,0290 Pb ₂ RiNbO ₆ 8,2898 Sr ₂ MaWO ₆ 8,0372 Ba ₂ RiNO ₆ 8,1483 Pb ₂ DyUO ₆ 8,7750 Sr ₂ GaUO ₆ 8,0372 Ba ₂ RiNO ₆ 8,3499 Pb ₂ HOU ₆ 8,7750 Sr ₂ GaWO ₆ 8,0070 Ba ₂ PrUO ₆ 8,786 Pb ₂ TrUO ₆ 8,7613 Sr ₂ RiNoO ₆ 8,0070 Ba ₂ PrUO ₈ 8,7359 Pb ₂ LuUO ₆ 8,7613 Sr ₂ RiNoO ₆ 8,0070 Ba ₂ PrUO ₈ 8,7359 Pb ₂ LuUO ₆ 8,7613 Sr ₂ RiNoO ₆ 7,9278 Ba ₂ ImWO ₆ 8,4351 Pb ₂ LuUO ₆ 8,6844 Sr ₂ RiNoO ₆ 7,9739 Ba ₂ PmRuO ₆ 8,33559 Pb ₂ AmUO ₆ 8,6844 Sr ₂ RiNoO ₆ 7,9739 Ba ₂ PmRuO ₆ 8,3559 Pb ₂ AmUO ₆ 8,5872 TDF <i>PP</i> (-)3 <i>m</i> (arropITM Orthogonal Matching Pursuit) Ba ₂ VBiO ₆ 4,3161 Pb ₂ VIO ₆ 3,9911 Pb ₂ RiWO ₆ 4,0431 Ba ₃ MBiO ₆ 4,3068 Pb ₂ CrMoO ₆ 3,9910 Pb ₂ ImO ₆ 3,9909 Ba ₆ GaVO ₆ 3,9651 Pb ₂ CrMO ₆ 3,9975 Pb ₂ InIO ₆ 3,9909 Ba ₆ GaVO ₆ 3,9656 Pb ₂ CrHO ₆ 3,9975 Pb ₂ InIO ₆ 3,9990 Ba ₆ GaVO ₆ 3,9856 Pb ₂ CrHO ₆ 3,9975 Pb ₂ InIO ₆ 3,99909 Ba ₆ GaMO ₆ 3,9856 Pb ₂ CrHO ₆ 3,9975 Pb ₂ InIO ₆ 4,0738 Ba ₂ GaMO ₆ 3,9827 Pb ₂ FeRuO ₆ 3,9245 Pb ₂ InIrO ₆ 4,0738 Ba ₂ GaMO ₆ 3,9827 Pb ₂ FeRuO ₆ 3,9268 Pb ₂ NRuO ₆ 4,0437 Pb ₂ VRO ₆ 3,9262 Pb ₅ GaidO ₆ 4,2715 Pb ₂ BiRO ₆ 4,1538 Pb ₅ VNO ₆ 3,9262 Pb ₅ GaidO ₆ 4,2715 Pb ₅ BiRO ₆ 4,11538	Ca_2HOUO_6	8,3545	Ba_2AIUO_6	8,2124	$Ba_2 ImUU_6$	8,6222		
Ca, YhUO ₆ 5, 264 Ba, VRO ₆ 5, 247 Ba, BiUO ₆ 8, 4000 Ca, YbUO ₆ 8, 2694 Ba, VRO ₆ 8, 1055 Ba, MNO ₆ 8, 5539 Ca, LuU ₆ 8, 2666 Ba, VUO ₆ 8, 1055 Ba, AmNO ₆ 8, 5095 Sr, AlMoO ₆ 7, 7686 Ba, FeVO ₆ 7, 9140 Ba, AmSO ₆ 8, 5015 Sr, AlMO ₆ 7, 7686 Ba, FeVO ₆ 7, 9140 Ba, AmOO ₆ 8, 6006 Sr_AlUO ₆ 8, 0379 Ba_GaReO ₆ 8, 0467 Ba, AmOO ₆ 8, 7789 Sr_2AlUO ₆ 8, 0379 Ba_GaReO ₆ 8, 0467 Ba, AmOO ₆ 8, 7789 Sr_2SUO ₆ 8, 2513 Ba, GaOSO ₆ 8, 0875 Pb ₂ ScUO ₆ 8, 5342 Sr_2VUO ₆ 8, 1092 Ba, WO ₆ 8, 4894 Pb ₂ RhNO ₆ 8, 22898 Sr_4MnSO ₆ 7, 9223 Ba, RhNO ₆ 8, 2275 Pb ₂ RhSO ₆ 8, 2818 Sr_2GaUO ₆ 8, 0372 Ba, RhNO ₆ 8, 2725 Pb ₂ RhBiO ₆ 8, 4624 Sr_GAWO ₆ 8, 0770	$Ca_2 EIUU_6$	8 3 1 2 8	Ba_2SCVO_6 Ba ScWO	8,0040	$Ba_2 I U V O_6$ Ba VbWO	8,1370		
Ca ₂ L100 ₆ 6.204 b.204 b.2100 ₆ 1,552 b.a ₂ AmNb0 ₆ 8,5534 Ca ₂ AmU0 ₆ 8,4695 Ba ₂ VU0 ₆ 8,2837 Ba ₂ AmNb0 ₆ 8,5096 Sr ₂ AlMo0 ₆ 7,7686 Ba ₂ CrU0 ₆ 8,2579 Ba ₂ AmNb0 ₆ 8,5015 Sr ₂ AlW0 ₆ 7,8596 Ba ₂ FeV0 ₆ 7,9140 Ba ₂ AmW0 ₆ 8,6006 Sr ₃ AlOS0 ₆ 7,7354 Ba ₂ FeV0 ₆ 8,1576 Ba ₂ AmOS ₀ 8,4765 Sr ₂ AlU0 ₆ 8,0379 Ba ₂ GaRe0 ₆ 8,0467 Ba ₂ AmOS ₀ 8,4765 Sr ₂ AlU0 ₆ 8,0379 Ba ₂ GaRe0 ₆ 8,0467 Ba ₂ AmOS ₀ 8,2513 Sr ₂ ScU0 ₆ 8,2513 Ba ₂ GaS0 ₆ 8,0875 Pb ₂ ScOS0 ₆ 8,2317 Sr ₂ VW0 ₆ 7,9310 Ba ₂ GaU0 ₆ 8,3900 Pb ₂ ScU0 ₆ 8,5342 Sr ₂ VU0 ₆ 8,0465 Ba ₂ RhV0 ₆ 8,0290 Pb ₂ RhMoO ₆ 8,2898 Sr ₂ MnOS0 ₆ 7,9223 Ba ₂ RhMo0 ₆ 8,1815 Pb ₂ RbNo ₆ 8,2818 Sr ₂ FeW0 ₆ 7,9831 Ba ₂ RhOs0 ₆ 8,1483 Pb ₂ DyU0 ₆ 8,7750 Sr ₄ GaU0 ₆ 8,0372 Ba ₂ RhOs0 ₆ 8,1483 Pb ₂ DyU0 ₆ 8,7750 Sr ₄ GaU0 ₆ 8,0070 Ba ₂ PLaO ₆ 8,3599 Pb ₂ ErU0 ₆ 8,7613 Sr ₄ RhMO ₆ 8,0070 Ba ₂ PLaO ₆ 8,35879 Pb ₂ ErU0 ₆ 8,7613 Sr ₄ RhMO ₆ 8,0980 Ba ₂ PrW0 ₆ 8,3459 Pb ₂ MbU0 ₆ 8,7735 Sr ₄ RhMO ₆ 8,0980 Ba ₂ PmR0 ₆ 8,3351 Pb ₂ LuU0 ₆ 8,6844 Sr ₅ RhMO ₆ 7,9278 Ba ₂ PmR0 ₆ 8,4270 Tp. Pr <i>Pm</i> (-)3 <i>m</i> (attroption Orthogonal Matching Pursuit) Ba ₄ VBi0 ₆ 4,3161 Pb ₂ VIO ₆ 3,9191 Pb ₄ RhWO ₆ 4,0431 Ba ₃ MnBi0 ₆ 4,3068 Pb ₂ CrMO ₆ 3,9810 Pb ₂ InWO ₆ 4,0573 Ba ₃ FeBi0 ₆ 4,3161 Pb ₂ VIO ₆ 3,9191 Pb ₄ RhWO ₆ 4,0431 Ba ₃ GaMO ₆ 3,9691 Pb ₂ CrGa ₆ 3,9907 Pb ₂ InBi ₆ 4,0773 Ba ₃ GaMO ₆ 3,9857 Pb ₂ CrMO ₆ 3,9917 Pb ₄ InBi ₆ 4,0573 Ba ₃ GaMO ₆ 3,9856 Pb ₂ CrMO ₆ 3,9917 Pb ₄ InBi ₆ 4,0573 Ba ₃ GaMO ₆ 3,9857 Pb ₅ CrMO ₆ 3,9173 Pb ₄ InBi ₆ 4,0573 Ba ₃ GaMO ₆ 3,9857 Pb ₅ CrMO ₆ 3,9173 Pb ₄ InBi ₆ 4,0577 Ba ₄ GaMO ₆ 3,9827 Pb ₅ CrMO ₆ 3,9173 Pb ₄ InBi ₆ 4,0778 Pb ₅ AlBi ₆ O ₆ 3,9328 Pb ₅ GaHO ₆ 3,9268 Pb ₅ MR ₀ O ₆ 4,1538 Pb ₅ VNO ₆ 3,9222 Pb ₅ GaBi ₆ 4,2715 Pb ₅ Bi ₅ Bi ₅ O ₆ 4,1538 Pb ₅ VNO ₆ 3,9222 Pb ₅ GaBi ₆ 6,27175 Pb ₅ Bi ₅ Bi ₅ O ₆ 4,1538	$Ca_2 \text{THEO}_6$	8 2694	Ba_2SCWO_6 Ba VRuO	7 9352	$B_2 B_1 U W O_6$	8,4000		
$ \begin{array}{c} {\rm Ca_2,{\rm AUUO}_6} & {\rm S,4005} & {\rm Ba_2,{\rm VIO}_6} & {\rm S,705} & {\rm Ba_3,{\rm AUMO}_6} & {\rm S,5096} \\ {\rm Sr_2,{\rm AIMO}_6} & {\rm 7,7686} & {\rm Ba_2,{\rm CrUO}_6} & {\rm 8,2579} & {\rm Ba_4,{\rm AmSO}_6} & {\rm 8,5096} \\ {\rm Sr_2,{\rm AIWO}_6} & {\rm 7,7354} & {\rm Ba_2,{\rm FeVO}_6} & {\rm 7,9140} & {\rm Ba_2,{\rm AmNO}_6} & {\rm 8,6006} \\ {\rm Sr_2,{\rm AIOS}_6} & {\rm 7,7354} & {\rm Ba_2,{\rm FeVO}_6} & {\rm 8,1576} & {\rm Ba_2,{\rm AmOS}_6} & {\rm 8,4765} \\ {\rm Sr_2,{\rm AIOO}_6} & {\rm 8,0379} & {\rm Ba_6,{\rm GaRCO}_6} & {\rm 8,0467} & {\rm Ba_2,{\rm AmOS}_6} & {\rm 8,2317} \\ {\rm Sr_2,{\rm SUO}_6} & {\rm 8,2513} & {\rm Ba_2,{\rm GaRCO}_6} & {\rm 8,0467} & {\rm Ba_2,{\rm AmOS}_6} & {\rm 8,2317} \\ {\rm Sr_2,{\rm VVO}_6} & {\rm 7,9310} & {\rm Ba_2,{\rm GaRCO}_6} & {\rm 8,0875} & {\rm pb_2,{\rm ScOS}_6} & {\rm 8,2317} \\ {\rm Sr_2,{\rm VVO}_6} & {\rm 8,1092} & {\rm Ba_2,{\rm WO}_6} & {\rm 8,4894} & {\rm pb_{R}{\rm RhNO}_6} & {\rm 8,2383} \\ {\rm Sr_2,{\rm MOSO}_6} & {\rm 7,9213} & {\rm Ba_2,{\rm RhNO}_6} & {\rm 8,1815} & {\rm pb_{R}{\rm NhO}_6} & {\rm 8,2898} \\ {\rm Sr_2,{\rm MOSO}_6} & {\rm 7,9223} & {\rm Ba_2,{\rm RhNO}_6} & {\rm 8,1815} & {\rm pb_{R}{\rm NhO}_6} & {\rm 8,2818} \\ {\rm Sr_2,{\rm GaUO}_6} & {\rm 8,0372} & {\rm Ba_2,{\rm RhO}_6} & {\rm 8,1483} & {\rm pb_2}{\rm DyUO_6} & {\rm 8,7750} \\ {\rm Sr_2,{\rm GaUO}_6} & {\rm 8,0372} & {\rm Ba_2,{\rm LaWO}_6} & {\rm 8,5879} & {\rm pb_2,{\rm HoIO}_6} & {\rm 8,77122} \\ {\rm Sr_2,{\rm GUO}_6} & {\rm 8,0980} & {\rm Ba_2,{\rm PrUO}_6} & {\rm 8,7756} & {\rm pb_2,{\rm TrUO}_6} & {\rm 8,7035} \\ {\rm Sr_2,{\rm RhAO}_6} & {\rm 8,0980} & {\rm Ba_2,{\rm PrUO}_6} & {\rm 8,7759} & {\rm pb_2,{\rm HoU}_6} & {\rm 8,7035} \\ {\rm Sr_2,{\rm RhO}_6} & {\rm 3,0990} & {\rm Ba_2,{\rm PrUO}_6} & {\rm 8,3559} & {\rm pb_2,{\rm M}OO} & {\rm 8,8872} \\ {\rm Sr_2,{\rm RhO}_6} & {\rm 3,0980} & {\rm Ba_2,{\rm PrWO}_6} & {\rm 3,9191} & {\rm pb_2,{\rm RhWO}_6} & {\rm 4,0431} \\ {\rm Ba_3,{\rm MnBiO}_6} & {\rm 4,3068} & {\rm pb_2,{\rm CrMO}_6} & {\rm 3,9191} & {\rm pb_2,{\rm RhWO}_6} & {\rm 4,0431} \\ {\rm Ba_3,{\rm MnBiO}_6} & {\rm 4,3068} & {\rm pb_2,{\rm CrMO}_6} & {\rm 3,9192} & {\rm pb_2,{\rm InHO}_6} & {\rm 3,9973} \\ {\rm Ba_4,{\rm GaNOO}_6} & {\rm 3,9691} & {\rm pb_2,{\rm CrMO}_6} & {\rm 3,9192} & {\rm pb_2,{\rm InHO}_6} & {\rm 3,9771} \\ {\rm Ba_4,{\rm GaNO}_6} & {\rm 3,9782} & {\rm pb_2,{\rm InHO}$	$Ca_2 I UUO_6$	8 2666	$Ba_2 VWO_6$	8 1055	$Ba_2 Bio O_6$ Ba AmNhO	8 5534		
$\begin{split} & \text{Sr}_2 \text{AIMOO}_6 & 7,7686 & \text{Ba}_2 \text{CUO}_6 & 8,2579 & \text{Ba}_2 \text{AIMSO}_6 & 8,5015 \\ & \text{Sr}_2 \text{AIMO}_6 & 7,8596 & \text{Ba}_2 \text{FeVO}_6 & 7,9140 & \text{Ba}_2 \text{AIMSO}_6 & 8,6006 \\ & \text{Sr}_2 \text{AIOSO}_6 & 7,7354 & \text{Ba}_2 \text{FeWO}_6 & 8,1576 & \text{Ba}_2 \text{AIMOO}_6 & 8,7789 \\ & \text{Sr}_2 \text{SUO}_6 & 8,0379 & \text{Ba}_2 \text{GaReO}_6 & 8,0467 & \text{Ba}_2 \text{AIMOO}_6 & 8,7789 \\ & \text{Sr}_2 \text{SUO}_6 & 8,2513 & \text{Ba}_2 \text{GaOSO}_6 & 8,0875 & \text{Pb}_2 \text{SeOSO}_6 & 8,2317 \\ & \text{Sr}_2 \text{VUO}_6 & 7,9310 & \text{Ba}_2 \text{GaRO}_6 & 8,0875 & \text{Pb}_2 \text{SeOSO}_6 & 8,2317 \\ & \text{Sr}_2 \text{VUO}_6 & 8,1092 & \text{Ba}_2 \text{YWO}_6 & 8,4894 & \text{Pb}_2 \text{RhNOO}_6 & 8,2898 \\ & \text{Sr}_2 \text{MOO}_6 & 7,9223 & \text{Ba}_2 \text{RhOO}_6 & 8,1815 & \text{Pb}_2 \text{RhSO}_6 & 8,2818 \\ & \text{Sr}_2 \text{MOSO}_6 & 7,9223 & \text{Ba}_2 \text{RhOO}_6 & 8,1815 & \text{Pb}_2 \text{RhSO}_6 & 8,2818 \\ & \text{Sr}_2 \text{GaOO}_6 & 8,0372 & \text{Ba}_2 \text{RhOO}_6 & 8,1483 & \text{Pb}_2 \text{DyUO}_6 & 8,7750 \\ & \text{Sr}_2 \text{GaUO}_6 & 8,0372 & \text{Ba}_2 \text{RhOO}_6 & 8,5879 & \text{Pb}_2 \text{ErUO}_6 & 8,7750 \\ & \text{Sr}_2 \text{GaUO}_6 & 8,0070 & \text{Ba}_2 \text{PLOO}_6 & 8,7786 & \text{Pb}_2 \text{TrUO}_6 & 8,7053 \\ & \text{Sr}_2 \text{RhOO}_6 & 8,0070 & \text{Ba}_2 \text{PLOO}_6 & 8,7851 & \text{Pb}_2 \text{LuUO}_6 & 8,6844 \\ & \text{Sr}_2 \text{RhOO}_6 & 8,0980 & \text{Ba}_2 \text{PMMOO}_6 & 8,4529 & \text{Pb}_2 \text{TrUO}_6 & 8,7053 \\ & \text{Sr}_2 \text{RhOO}_6 & 7,9739 & \text{Ba}_2 \text{PmMOO}_6 & 8,3559 & \text{Pb}_2 \text{TrUO}_6 & 8,7053 \\ & \text{Sr}_2 \text{RhOO}_6 & 7,9739 & \text{Ba}_2 \text{PmMOO}_6 & 8,3559 & \text{Pb}_2 \text{TrUO}_6 & 8,7053 \\ & \text{Sr}_2 \text{RhOO}_6 & 3,0980 & \text{Ba}_2 \text{PmMOO}_6 & 8,4270 & \text{TP}_7 \text{TP}_7 \text{TP}_3 \text{TM} \text{Ba}_2 \text{PmMOO}_6 & 3,9191 & \text{Pb}_2 \text{RhWO}_6 & 4,0431 \\ & \text{Ba}_2 \text{MnGO}_6 & 3,9611 & \text{Pb}_2 \text{CrWO}_6 & 3,9191 & \text{Pb}_2 \text{RhWO}_6 & 4,0431 \\ & \text{Ba}_2 \text{GaVO}_6 & 3,9856 & \text{Pb}_2 \text{CrHOO}_6 & 3,9173 & \text{Pb}_2 \text{InHO}_6 & 3,9843 \\ & \text{Ba}_4 \text{GaMOO}_6 & 3,9856 & \text{Pb}_2 \text{CrHOO}_6 & 3,9173 & \text{Pb}_2 \text{InHO}_6 & 4,3587 \\ & \text{Pb}_2 \text{ABIO}_6 & 4,2428 & \text{Pb}_2 \text{MnHO}_6 & 3,9245 & \text{Pb}_2 \text{MRUO}_6 & 4,0431 \\ & \text{Pb}_2 \text{VNOO}_6 & 3,9827 & \text{Pb}_2 \text{FRWO}_6 & 3,9268 & \text{Pb}_2 \text{NA}_0 & 4,0798 \\ & \text{Pb}_2 ABI$	$Ca_2 Luo O_6$ Ca. AmUO	8,2000	$Ba_2 V W O_6$ Ba_VUO	8 2837	$Ba_2 AmMoO_6$	8 5096		
$\begin{split} & r_2 \text{AWO}_6 & r_1 \text{S50} & \text{Ba}_2 \text{FeV}_6 & r_2 \text{H}(4) & \text{Ba}_2 \text{AmWO}_6 & 8.6006 \\ & \text{Sr}_2 \text{AlOsO}_6 & 7.7354 & \text{Ba}_2 \text{FeWO}_6 & 8.1576 & \text{Ba}_2 \text{AmWO}_6 & 8.6006 \\ & \text{Sr}_2 \text{AlOsO}_6 & 7.7354 & \text{Ba}_2 \text{GeWO}_6 & 8.1576 & \text{Ba}_2 \text{AmWO}_6 & 8.7789 \\ & \text{Sr}_5 \text{SUO}_6 & 8.2513 & \text{Ba}_2 \text{GaOsO}_6 & 8.0467 & \text{Ba}_2 \text{AmUO}_6 & 8.7789 \\ & \text{Sr}_5 \text{CUO}_6 & 8.2513 & \text{Ba}_2 \text{GaOSO}_6 & 8.0875 & \text{Pb}_2 \text{ScOSO}_6 & 8.2317 \\ & \text{Sr}_2 \text{VWO}_6 & 7.9310 & \text{Ba}_2 \text{GaUO}_6 & 8.3900 & \text{Pb}_2 \text{ScUO}_6 & 8.5342 \\ & \text{Sr}_2 \text{VUO}_6 & 8.1092 & \text{Ba}_2 \text{WO}_6 & 8.4894 & \text{Pb}_2 \text{RhNbO}_6 & 8.2898 \\ & \text{Sr}_2 \text{MnOSO}_6 & 7.9223 & \text{Ba}_2 \text{RhMO}_6 & 8.1815 & \text{Pb}_2 \text{RhSO}_6 & 8.2818 \\ & \text{Sr}_7 \text{FeWO}_6 & 7.9831 & \text{Ba}_2 \text{RhWO}_6 & 8.2725 & \text{Pb}_2 \text{RhBO}_6 & 8.7750 \\ & \text{Sr}_2 \text{GaUO}_6 & 8.2155 & \text{Ba}_2 \text{RhWO}_6 & 8.3439 & \text{Pb}_2 \text{PhOU}_6 & 8.7750 \\ & \text{Sr}_2 \text{GaUO}_6 & 8.2155 & \text{Ba}_2 \text{RhWO}_6 & 8.5879 & \text{Pb}_2 \text{ErUO}_6 & 8.77613 \\ & \text{Sr}_2 \text{RhWO}_6 & 8.0070 & \text{Ba}_2 \text{PrUO}_6 & 8.7786 & \text{Pb}_2 \text{TmUO}_6 & 8.7305 \\ & \text{Sr}_2 \text{RhWO}_6 & 8.0980 & \text{Ba}_2 \text{PmMO}_6 & 8.4351 & \text{Pb}_2 \text{LuUO}_6 & 8.6844 \\ & \text{Sr}_3 \text{RhWO}_6 & 8.0980 & \text{Ba}_2 \text{PmWO}_6 & 8.3559 & \text{Pb}_2 \text{AmUO}_6 & 8.6847 \\ & \text{Sr}_3 \text{RhWO}_6 & 8.0980 & \text{Ba}_2 \text{PmWO}_6 & 8.4720 & & & & & & & & & & & & & & & & & & &$	Sr.AlMoO	7.7686	$Ba_2 CrUO_6$	8.2579	$Ba_2 AmSbO_6$	8,5015		
$a_{12}a_{11}a_{16}$ $a_{12}a_{12}a_{16}a_{16}$ $a_{12}a_{11}a_{16}a_{16}$ $a_{13}a_{16}a_{16}a_{16}$ $a_{13}a_{11}a_{16}a$	Sr_2 AlWO.	7,8596	$Ba_2 \text{FeVO}_6$	7 9140	$Ba_2 AmWO_6$	8,6006		
Try LiveDry LogRegion RefDry LogRegion RefSr, AlUO8,0379BagGaReO8,0477BagAmUO8,7789Sr, SCUO8,2513BagGaReO8,0875Pb_SCOSO8,2317Sr, VWO7,9310BagCaUO8,3900Pb_SCUO8,5342Sr, VUO8,1092BagYWO8,4894Pb_RhNeO8,3336Sr, MNWO8,0465BagRhVO8,0290Pb_RhNeO8,2898Sr, MnOSO7,9223BagRhWO8,2725Pb_RhBiO8,4624Sr, SreWO7,9831BagRhWO8,2725Pb_RhBiO8,4624Sr, GaWO8,0372BagRhWO8,2725Pb_RhBiO8,7750Sr, GaUO8,2155BagLnWO8,3499Pb_HOU8,7752Sr, Studo8,070BagPrUO8,7786Pb_TmUO8,7613Sr, RhMoO8,0070BagPrUO8,3559Pb_AmUO8,6844Sr, RhWO8,0980BagPmRuO8,3559Pb_AmUO8,8872Sr, RhVO7,9739BagPmRuO8,3559Pb_AMUO8,8872Sr, RhOSO4,3161Pb_VIrO3,9111Pb_RRWO4,0431BagAMBiO4,3068Pb_CrMOO3,9810Pb_InROO3,9909BagCaWO3,9856Pb_CrMO3,9245Pb_InRO3,9771BagCaWO3,9856Pb_CrINO3,9173Pb_InBiO4,3587Pb_AlBiO4,2428Pb_MMAO3,9245Pb_InRO4,0437Pb_AlBiO4,2428Pb_MMAO3,9268Pb_S	Sr_AlOsO	7,7354	Ba ₂ FeWO	8.1576	Ba ₂ AmOsO ₆	8.4765		
$\begin{split} & \text{Sr}_2 \text{SUO}_6 & \text{Subs} & \text{Euglance}_6 & \text{Subs} & \text{Euglance}_6 & \text{Subs} & \text{Euglance}_6 & \text{Subs} \\ & \text{Sr}_2 \text{SUO}_6 & \text{Subs} & \text{Euglance}_6 & \text{Subs} & \text{Euglance}_6 & \text{Subs} \\ & \text{Sr}_2 \text{VUO}_6 & \text{Subs} & \text{Subs} & \text{Pb}_2 \text{Secoo}_6 & \text{Subs} \\ & \text{Sr}_2 \text{VUO}_6 & \text{Subs} & \text{Pb}_2 \text{Subs} & \text{Subs} & \text{Subs} \\ & \text{Sr}_2 \text{VUO}_6 & \text{Subs} & \text{Subs} & \text{Pb}_2 \text{Subs} \\ & \text{Sr}_2 \text{VUO}_6 & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} \\ & \text{Sr}_2 \text{MnOSO}_6 & 7.9223 & \text{Ba}_2 \text{RhOO}_6 & \text{Subs} & \text{Subs} & \text{Subs} \\ & \text{Sr}_2 \text{FeWO}_6 & 7.9831 & \text{Ba}_2 \text{RhOO}_6 & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} \\ & \text{Sr}_2 \text{FeWO}_6 & 7.9831 & \text{Ba}_2 \text{RhOO}_6 & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} \\ & \text{Sr}_2 \text{GaWO}_6 & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} \\ & \text{Sr}_2 \text{GaWO}_6 & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} \\ & \text{Subs} \\ & \text{Subs} \\ & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} \\ & \text{Subs} \\ & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} & \text{Subs} \\ \\ & \text{Subs} & Sub$	Sr.AlUO	8.0379	Ba-GaReO	8.0467	Ba ₂ AmUO	8.7789		
$\begin{split} & r_2 VO_6 & 0.011 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 VU_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 VU_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 VU_6 & 0.016 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 HO_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 F_2 WO_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 GaWO_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 GaWO_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 GaWO_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 GaWO_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 F_2 VU_6 & 0.012 & H_2 HO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 HMO_6 & 0.017 & H_2 HVO_6 & 0.011 & H_2 HO_6 & 0.011 \\ & r_2 HMO_6 & 0.017 & H_2 HVO_6 & 0.011 & H_2 HUO_6 & 0.011 \\ & r_2 HMO_6 & 0.017 & H_2 HVO_6 & 0.011 & H_2 HUO_6 & 0.011 \\ & r_2 HMO_6 & 0.017 & H_2 HVO_6 & 0.011 & H_2 HUO_6 & 0.011 \\ & r_2 HNO_6 & 0.017 & H_2 HVO_6 & 0.011 & H_2 HUO_6 & 0.011 \\ & r_2 HNO_6 & 0.017 & H_2 HVO_6 & 0.011 & H_2 HUO_6 & 0.011 \\ & r_2 HNO_6 & 0.017 & H_2 HWO_6 & 0.011 & H_2 HUO_6 & 0.011 \\ & r_2 HNO_6 & 0.017 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & r_2 HNO_6 & 0.017 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & H_2 VBIO_6 & 0.010 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & H_2 VBIO_6 & 0.010 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & H_2 VBIO_6 & 0.001 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & H_2 VBIO_6 & 0.001 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & H_2 VBIO_6 & 0.001 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & H_2 VBIO_6 & 0.001 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & H_2 VBIO_6 & 0.001 & H_2 HWO_6 & 0.011 & H_2 HWO_6 & 0.011 \\ & H_2 VBIO_6 & 0.0000 & H_2 HWO_6 & 0.011 & H_2 HVO_6 & 0.011 \\ & H_2 VBIO_6 & 0.0000 & H_2 HWO_6 & 0.0111 & H_2 HVO_6 & 0.0111 \\ & H_2 VBIO_6 & 0.0000 & 0.0101 & H_2 HWO_6 & 0.0111 \\ & H_2 VHO_6 & 0.0000 & 0.0111 & H_2 HVO_6 & 0.0111 \\ & H_2 VHO_6 & 0.0000 & 0.0111 & H_2 HVO_6 & 0.0111 \\ & H_2 VHO_6 & 0.0121 & H_2 HWO_6 & 0.0121 & H_2 HWO_6 & 0.0111 \\ & H_2 VHO_6 & 0.0121 & H$	$Sr_2 ScUO$	8 2513	Ba.GaOsO.	8 0875	Ph.ScOsO	8 2317		
	Sr.VWO	7 9310	Ba.GaUO.	8 3900	Ph.ScUO	8 5342		
$\begin{split} & \text{Sr}_2 \text{VO}_6 & \text{Sr}_1 \text{OV}_2 & \text{Dr}_2 \text{InV}_6 & \text{Sr}_2 \text{OV}_6 & \text{Sr}_2 \text{InV}_6 & \text{Sr}_2 \text{Sr}_2 \text{InV}_6 & \text{Sr}_2 \text{Sr}_2 \text{InV}_6 & \text{Sr}_2 \text{Sr}_2 \text{InV}_6 & \text{Sr}_2 \text{Sr}_2$	$Sr_2 V UO_6$	8 1092	$Ba_2 Sub O_6$	8 4894	Ph RhNhO	8 3336		
$\begin{split} & \text{Sr}_2\text{MINO}_6 & \text{Signod} & \text{DagAthVO}_6 & \text{Signod} & \text{PogAthAOO}_6 & \text{Signod} & Signod$	$Sr_2 V OO_6$	8,0465	$Ba_2 I W O_6$	8 0290	Ph RhMoO	8 2898		
$\begin{split} & \text{Sr}_2\text{PeWO}_6 & 7,9223 & \text{Da}_2\text{RINVO}_6 & 8,1713 & \text{Pb}_2\text{RINOO}_6 & 6,2173 \\ & \text{Sr}_2\text{FeWO}_6 & 7,9831 & \text{Ba}_2\text{R}\text{NOO}_6 & 8,2725 & \text{Pb}_2\text{R}\text{hBiO}_6 & 8,4624 \\ & \text{Sr}_2\text{GaWO}_6 & 8,0372 & \text{Ba}_2\text{R}\text{NOO}_6 & 8,1483 & \text{Pb}_2\text{D}\text{UO}_6 & 8,7750 \\ & \text{Sr}_2\text{GaUO}_6 & 8,2155 & \text{Ba}_2\text{InWO}_6 & 8,3499 & \text{Pb}_2\text{HeUO}_6 & 8,77122 \\ & \text{Sr}_2\text{YUO}_6 & 8,4932 & \text{Ba}_2\text{L}\text{aWO}_6 & 8,5879 & \text{Pb}_2\text{ErUO}_6 & 8,7613 \\ & \text{Sr}_2\text{R}\text{MOO}_6 & 8,0070 & \text{Ba}_2\text{PrUO}_6 & 8,7786 & \text{Pb}_2\text{TmUO}_6 & 8,7305 \\ & \text{Sr}_2\text{R}\text{huO}_6 & 8,0980 & \text{Ba}_2\text{PmMO}_6 & 8,3559 & \text{Pb}_2\text{AmUO}_6 & 8,8872 \\ & \text{Sr}_2\text{R}\text{hoSO}_6 & 7,9278 & \text{Ba}_2\text{PmMO}_6 & 8,3559 & \text{Pb}_2\text{AmUO}_6 & 8,8872 \\ & \text{Sr}_2\text{R}\text{hoSO}_6 & 7,9739 & \text{Ba}_2\text{PmSO}_6 & 8,4270 \\ & & \text{ID} \cdot \text{ID} \cdot \text{P} \cdot Pm(-)3m (\text{anropirrm Orthogonal Matching Pursuit) \\ \\ & \text{Ba}_2\text{VBiO}_6 & 4,3161 & \text{Pb}_2\text{VIrO}_6 & 3,9191 & \text{Pb}_2\text{R}\text{MO}_6 & 4,0431 \\ & \text{Ba}_2\text{MnBiO}_6 & 4,3068 & \text{Pb}_2\text{CrMOO}_6 & 3,9810 & \text{Pb}_2\text{InWO}_6 & 4,0573 \\ & \text{Ba}_2\text{FeBiO}_6 & 4,3309 & \text{Pb}_2\text{CrRuO}_6 & 3,9975 & \text{Pb}_2\text{InReO}_6 & 3,9943 \\ & \text{Ba}_2\text{GaWO}_6 & 3,9691 & \text{Pb}_2\text{CrSO}_6 & 3,9245 & \text{Pb}_2\text{InIrO}_6 & 3,9771 \\ & \text{Ba}_2\text{GaWO}_6 & 3,9856 & \text{Pb}_2\text{CrIrO}_6 & 3,9173 & \text{Pb}_2\text{InBiO}_6 & 4,3587 \\ & \text{Pb}_2\text{AlBiO}_6 & 4,2428 & \text{Pb}_2\text{MnMO}_6 & 3,9027 & \text{Pb}_2\text{PruO}_6 & 4,0145 \\ & \text{Pb}_2\text{VRuO}_6 & 3,9827 & \text{Pb}_2\text{FeRuO}_6 & 3,9268 & \text{Pb}_2\text{NRuO}_6 & 4,0347 \\ & \text{Pb}_2\text{VRuO}_6 & 3,9328 & \text{Pb}_2\text{GaIrO}_6 & 3,9268 & \text{Pb}_2\text{NRuO}_6 & 4,0347 \\ & \text{Pb}_2\text{VRuO}_6 & 3,9328 & \text{Pb}_2\text{GaIrO}_6 & 3,8900 & \text{Pb}_2\text{BiSeO}_6 & 4,2570 \\ & \text{Pb}_2\text{VRuO}_6 & 3,9328 & \text{Pb}_2\text{GaIrO}_6 & 3,8900 & \text{Pb}_2\text{BiSeO}_6 & 4,1538 \\ & \text{Pb}_2\text{VRuO}_6 & 3,9262 & \text{Pb}_2\text{GaBiO}_6 & 4,2715 & \text{Pb}_2\text{BiSO}_6 & 4,1538 \\ & \text{Pb}_2\text{VSOO}_6 & 3,9262 & \text{Pb}_2\text{GaBiO}_6 & 4,2715 & \text{Pb}_2\text{BiSO}_6 & 4,1473 \\ & \text{Pb}_2\text{VRO}_6 & 3,9262 & \text{Pb}_2\text{GaBiO}_6 & 4,2715 & \text{Pb}_2\text{BiSO}_6 & 4,1473 \\ & \text{Pb}_2\text{VSOO}_6 & 3,9262 & \text{Pb}_2\text{GaBiO}_6$	Sr_2 MnOsO	7 0223	$Ba_2 Rh VO_6$	8,0290	Ph PhShO	8 2818		
$\begin{split} & \text{Si}_2 \text{IeWO}_6 & 7,9831 & \text{Ba}_2 \text{NIWO}_6 & 8,7123 & \text{Fb}_2 \text{NIBO}_6 & 8,4024 \\ & \text{Sr}_2 \text{GaUO}_6 & 8,0372 & \text{Ba}_2 \text{RhOsO}_6 & 8,1483 & \text{Pb}_2 \text{DyUO}_6 & 8,7750 \\ & \text{Sr}_2 \text{GaUO}_6 & 8,2155 & \text{Ba}_2 \text{InWO}_6 & 8,3499 & \text{Pb}_2 \text{HoUO}_6 & 8,7722 \\ & \text{Sr}_2 \text{YUO}_6 & 8,4932 & \text{Ba}_2 \text{LaWO}_6 & 8,5879 & \text{Pb}_2 \text{ErUO}_6 & 8,7613 \\ & \text{Sr}_2 \text{RhOO}_6 & 8,0070 & \text{Ba}_2 \text{PrUO}_6 & 8,7786 & \text{Pb}_2 \text{TmUO}_6 & 8,7305 \\ & \text{Sr}_2 \text{RhOO}_6 & 7,9278 & \text{Ba}_2 \text{PmMO}_6 & 8,4351 & \text{Pb}_2 \text{LuUO}_6 & 8,6844 \\ & \text{Sr}_2 \text{RhOSO}_6 & 7,9739 & \text{Ba}_2 \text{PmSO}_6 & 8,4270 \\ & & & & & & & & & & & & & & & & & & $	$SI_2WIIOSO_6$	7,9223	$Ba_2 RhWO$	8,1815 8 2725	10_2 Kiisu 0_6	8,2010		
$S_{12}GaWO_{6}$ $8,03/2$ $Ba_{2}RHOSO_{6}$ $8,1483$ $Pb_{2}DyOO_{6}$ $8,7730$ $Sr_{2}GaUO_{6}$ $8,2155$ $Ba_{2}InWO_{6}$ $8,3499$ $Pb_{2}HoUO_{6}$ $8,7722$ $Sr_{2}YUO_{6}$ $8,4932$ $Ba_{2}LaWO_{6}$ $8,5879$ $Pb_{2}ErUO_{6}$ $8,7613$ $Sr_{2}RhMO_{6}$ $8,0070$ $Ba_{2}PrUO_{6}$ $8,7786$ $Pb_{2}ImUO_{6}$ $8,7305$ $Sr_{2}RhRo_{6}$ $7,9278$ $Ba_{2}PmRo_{6}$ $8,4351$ $Pb_{2}LuUO_{6}$ $8,6844$ $Sr_{2}RhOSO_{6}$ $7,9739$ $Ba_{2}PmRo_{6}$ $8,4270$ $Recompose 1000 mmm or the gonal Matching Pursuit)$ $Ba_{2}VBiO_{6}$ $4,3161$ $Pb_{2}VIrO_{6}$ $3,9191$ $Pb_{2}RhWO_{6}$ $4,0431$ $Ba_{2}PaBiO_{6}$ $4,3068$ $Pb_{2}CrMO_{6}$ $3,9810$ $Pb_{2}InWO_{6}$ $4,0573$ $Ba_{2}FeBiO_{6}$ $4,3068$ $Pb_{2}CrWO_{6}$ $3,9975$ $Pb_{2}InReO_{6}$ $3,9909$ $Ba_{2}GaVO_{6}$ $3,8673$ $Pb_{2}CrWO_{6}$ $3,9245$ $Pb_{2}InIrO_{6}$ $3,9771$ $Ba_{2}GaWO_{6}$ $3,9856$ $Pb_{2}CrIrO_{6}$ $3,9173$ $Pb_{2}InBiO_{6}$ $4,3587$ $Pb_{2}AlSbO_{6}$ $3,9782$ $Pb_{2}MnMO_{6}$ $3,9027$ $Pb_{2}PrRuO_{6}$ $4,0437$ $Pb_{2}VRO_{6}$ $3,9827$ $Pb_{2}FeRuO_{6}$ $3,9268$ $Pb_{2}NdRuO_{6}$ $4,0347$ $Pb_{2}VRO_{6}$ $3,9328$ $Pb_{2}GaMO_{6}$ $3,9536$ $Pb_{2}BiSO_{6}$ $4,2570$ $Pb_{2}VRO_{6}$ $3,9262$ $Pb_{5}GaHO_{6}$ $3,9900$ $Pb_{2}BiReO_{6}$ $4,$	$SI_2 rewO_6$	2,9031 2,90272	$Ba_2 Ril v O_6$	0,2723	Ph Dullo	8,4024		
Sr_2GaOO_6 $8,2135$ Ba_2InWO_6 $8,3499$ Po_2HOO_6 $8,7/22$ Sr_2YUO_6 $8,4932$ Ba_2LaWO_6 $8,5879$ Pb_2ErUO_6 $8,7613$ Sr_2RhMO_6 $8,0070$ Ba_2PrUO_6 $8,7786$ Pb_2TmUO_6 $8,7305$ Sr_2RhRuO_6 $7,9278$ Ba_2PmMO_6 $8,4351$ Pb_2LuUO_6 $8,6844$ Sr_2RhWO_6 $8,0980$ Ba_2PmRuO_6 $8,3559$ Pb_2AmUO_6 $8,8872$ Sr_2RhOsO_6 $7,9739$ Ba_2PmSbO_6 $8,4270$ WO_6 $4,0431$ Ba_2VBiO_6 $4,3161$ Pb_2VIO_6 $3,9191$ Pb_2RhWO_6 $4,0431$ Ba_2MnBiO_6 $4,3068$ Pb_2CrMOO_6 $3,9810$ Pb_2InWO_6 $4,0573$ Ba_2FeBiO_6 $4,3309$ Pb_2CrRuO_6 $3,9975$ Pb_2InSO_6 $3,9843$ Ba_2GaVO_6 $3,9691$ Pb_2CrSO_6 $3,9245$ Pb_2InIO_6 $3,97711$ Ba_2GaWO_6 $3,9782$ Pb_2MnMoO_6 $3,9734$ Pb_2LaRuO_6 $4,0798$ Pb_2AIBiO_6 $4,2428$ Pb_2MnRuO_6 $3,9268$ Pb_2NRuO_6 $4,0347$ Pb_2VRuO_6 $3,9120$ Pb_2FRuO_6 $3,9268$ Pb_2MRuO_6 $4,0347$ Pb_2VRuO_6 $3,9228$ Pb_2GaMOO_6 $3,9536$ Pb_2BIREO_6 $4,2570$ Pb_2VRuO_6 $3,9228$ Pb_2GaIO_6 $3,9800$ Pb_2BIREO_6 $4,1473$	Sr ₂ GawO ₆	8,0372	$Ba_2 KIIOSO_6$	0,1403	PO_2DYUO_6	8,7730		
$Sr_2 Y UO_6$ $8,4932$ $Ba_2 LaWO_6$ $8,5879$ $Pb_2 ErUO_6$ $8,7613$ $Sr_2 RhMOO_6$ $8,0070$ $Ba_2 PrUO_6$ $8,7786$ $Pb_2 TmUO_6$ $8,7305$ $Sr_2 RhWO_6$ $7,9278$ $Ba_2 PmMOO_6$ $8,4351$ $Pb_2 LuUO_6$ $8,6844$ $Sr_2 RhWO_6$ $8,0980$ $Ba_2 PmRuO_6$ $8,3559$ $Pb_2 AmUO_6$ $8,6872$ $Sr_2 RhOsO_6$ $7,9739$ $Ba_2 PmSbO_6$ $8,4270$ $IIP. rp. Pm(-)3m$ (arropurm Orthogonal Matching Pursuit) $Ba_2 VBiO_6$ $4,3161$ $Pb_2 VIrO_6$ $3,9191$ $Pb_2 RhWO_6$ $4,0431$ $Ba_2 MnBiO_6$ $4,3068$ $Pb_2 CrMO_6$ $3,9810$ $Pb_2 InWO_6$ $4,0573$ $Ba_2 FeBiO_6$ $4,3309$ $Pb_2 CrRuO_6$ $3,9975$ $Pb_2 InSO_6$ $3,9909$ $Ba_2 GaVO_6$ $3,8673$ $Pb_2 CrWO_6$ $3,9975$ $Pb_2 InSO_6$ $3,9843$ $Ba_2 GaWO_6$ $3,9691$ $Pb_2 CrSO_6$ $3,9245$ $Pb_2 InIrO_6$ $3,9771$ $Ba_2 GaWO_6$ $3,9782$ $Pb_2 MnMO_6$ $3,9734$ $Pb_2 LaRuO_6$ $4,0798$ $Pb_2 AlBiO_6$ $4,2428$ $Pb_2 MnRuO_6$ $3,9027$ $Pb_2 PrRuO_6$ $4,0347$ $Pb_2 VMO_6$ $3,9827$ $Pb_2 FeRuO_6$ $3,9268$ $Pb_2 NdRuO_6$ $4,0347$ $Pb_2 VRuO_6$ $3,9120$ $Pb_2 GaInO_6$ $3,9536$ $Pb_2 BiSbO_6$ $4,2570$ $Pb_2 VReO_6$ $3,9328$ $Pb_2 GaIrO_6$ $3,8900$ $Pb_2 BiReO_6$ $4,1473$	Sr ₂ GaUU ₆	8,2155	$Ba_2 In WO_6$	8,3499	Pb_2HOUO_6	8,7722		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\operatorname{Sr}_2 Y \cup O_6$	8,4932	Ba_2LaWO_6	8,58/9	Pb_2ErUU_6	8,7613		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr ₂ RhMoO ₆	8,0070	Ba_2PrUO_6	8,//86	$Pb_2 ImUU_6$	8,7305		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr_2RhRuO_6	7,9278	Ba ₂ PmMoO ₆	8,4351	Pb ₂ LuUO ₆	8,6844		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr_2RhWO_6	8,0980	Ba ₂ PmRuO ₆	8,3559	Pb_2AmUO_6	8,8872		
Пр. гр. $Pm(-)3m$ (алгоритм Orthogonal Matching Pursuit)Ba2VBiO64,3161Pb2VIrO63,9191Pb2RhWO64,0431Ba2MnBiO64,3068Pb2CrMoO63,9810Pb2InWO64,0573Ba2FeBiO64,3309Pb2CrRuO63,9102Pb2InReO63,9909Ba2GaVO63,8673Pb2CrWO63,9975Pb2InOsO63,9843Ba2GaWO63,9691Pb2CrOsO63,9245Pb2InIrO63,9771Ba2GaWO63,9856Pb2CrIrO63,9173Pb2InBiO64,3587Pb2AISbO63,9782Pb2MnMoO63,9734Pb2LaRuO64,0798Pb2AIBiO64,2428Pb2MnRuO63,9027Pb2PRuO64,0145Pb2VRuO63,9827Pb2FRuO63,9268Pb2NdRuO64,0347Pb2VRuO63,9120Pb2GaMoO63,9536Pb2BiSbO64,2570Pb2VReO63,9328Pb2GaIrO63,8900Pb2BiReO64,1538Pb2VOSO63,9262Pb3GaBiO64,2715Pb3BiOSO64,1473	Sr ₂ RhOsO ₆	7,9739	Ba ₂ PmSbO ₆	8,4270				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Пр. г	р. <i>Рт</i> (–)3 <i>т</i> (алгоритм	Orthogonal Match	ning Pursuit)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba ₂ VBiO ₆	4,3161	Pb ₂ VIrO ₆	3,9191	Pb ₂ RhWO ₆	4,0431		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba ₂ MnBiO ₆	4,3068	Pb ₂ CrMoO ₆	3,9810	Pb ₂ InWO ₆	4,0573		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba ₂ FeBiO ₆	4,3309	Pb ₂ CrRuO ₆	3,9102	Pb ₂ InReO ₆	3,9909		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba_2GaVO_6	3,8673	Pb ₂ CrWO ₆	3,9975	Pb ₂ InOsO ₆	3,9843		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	${\rm Ba}_2{\rm GaMoO}_6$	3,9691	Pb ₂ CrOsO ₆	3,9245	Pb ₂ InIrO ₆	3,9771		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba_2GaWO_6	3,9856	Pb ₂ CrIrO ₆	3,9173	Pb ₂ InBiO ₆	4,3587		
Pb_2AIBiO_6 $4,2428$ Pb_2MnRuO_6 $3,9027$ Pb_2PrRuO_6 $4,0145$ Pb_2VMoO_6 $3,9827$ Pb_2FeRuO_6 $3,9268$ Pb_2NdRuO_6 $4,0347$ Pb_2VRuO_6 $3,9120$ Pb_2GaMoO_6 $3,9536$ Pb_2BiSbO_6 $4,2570$ Pb_2VReO_6 $3,9328$ Pb_2GaIrO_6 $3,8900$ Pb_2BiReO_6 $4,1538$ Pb_2VOSO_6 $3,9262$ Pb_2GaBiO_6 $4,2715$ Pb_2BiOsO_6 $4,1473$	Pb ₂ AlSbO ₆	3,9782	Pb ₂ MnMoO ₆	3,9734	Pb ₂ LaRuO ₆	4,0798		
Pb_2VMoO_6 $3,9827$ Pb_2FeRuO_6 $3,9268$ Pb_2NdRuO_6 $4,0347$ Pb_2VRuO_6 $3,9120$ Pb_2GaMoO_6 $3,9536$ Pb_2BiSbO_6 $4,2570$ Pb_2VReO_6 $3,9328$ Pb_2GaIrO_6 $3,8900$ Pb_2BiReO_6 $4,1538$ Pb_2VOSO_6 $3,9262$ Pb_2GaBiO_6 $4,2715$ Pb_2BiOsO_6 $4,1473$	Pb ₂ AlBiO ₆	4,2428	Pb ₂ MnRuO ₆	3,9027	Pb ₂ PrRuO ₆	4,0145		
Pb_2VRuO_6 3,9120 Pb_2GaMoO_6 3,9536 Pb_2BiSbO_6 4,2570 Pb_2VReO_6 3,9328 Pb_2GaIrO_6 3,8900 Pb_2BiReO_6 4,1538 Pb_2VOsO_6 3,9262 Pb_2GaBiO_6 4,2715 Pb_2BiOsO_6 4,1473	Pb ₂ VMoO ₆	3,9827	Pb ₂ FeRuO ₆	3,9268	Pb ₂ NdRuO ₆	4,0347		
Pb_2VReO_6 3,9328 Pb_2GaIrO_6 3,8900 Pb_2BiReO_6 4,1538 Pb_2VOsO_6 3,9262 Pb_2GaBiO_6 4,2715 Pb_2BiOsO_6 4,1473	Pb ₂ VRuO ₆	3,9120	Pb ₂ GaMoO ₆	3,9536	Pb ₂ BiSbO ₆	4,2570		
Pb ₂ VOsO ₆ 3,9262 Pb ₂ GaBiO ₆ 4,2715 Pb ₂ BiOsO ₆ 4,1473	Pb ₂ VReO ₆	3,9328	Pb ₂ GaIrO ₄	3,8900	Pb ₂ BiReO ₆	4,1538		
	Pb ₂ VOsO ₆	3,9262	Pb ₂ GaBiO ₆	4,2715	Pb ₂ BiOsO ₆	4,1473		

....

Таблица 4

Прогноз параметров кристаллической тетрагональной (или гексагональной) решетки новых соединений состава $A_2^{II}B^{III}B'^VO_6$

Table 4

Продолжение Таблицы 5

β, град.4

90,07

90,13

89,78

90,06

90,03 90,05 90,03 90,01 90,06 90,12 90,11 90,07 89,97 90,09 90,03 90,09 90,09 90,11 90,11 90,11 90,10 90,13 90,10 90,09 90,09 90,11 90,09 90,19 90,13 90,18

c, Å³

8,0448

8,0493

8,2543

7,9340

 $a, Å^1$

5,5357

5,5321

5,6569

5,4593

Состав

Ca₂YOsO₆

Ca₂YIrO₆

Ca₂YBiO₆

Ca₂RhNbO₆

 $b, Å^2$

5,7288

5,7312

5,9334

5,5722

Prediction of the parameters of the crystal tetragonal (or hexagonal) lattice of new compounds with the composition A2^{IIBIII}B'^{VO}6

	<i>a</i> , Å	<i>c</i> , Å		<i>a</i> , Å	<i>c</i> , Å
Состав	Пр. гр. <i>14/m</i> (алгоритм Ridge)	Пр. гр. <i>14/m</i> (алгоритм Random Forest)	Состав	Пр. гр. <i>R</i> (–)3 (алгоритм SAND)	Пр. гр. <i>R</i> (–)3 (алгоритм ARD Regression)
Sr ₂ GaMoO ₆	5,5927	7,8916	Ba ₂ BiMoO ₆	6,0390	14,7809
	Пр. гр. <i>P</i> 6 ₃ / <i>mmc</i> (алгоритм ARD Regression)	Пр. гр. <i>P</i> 6 ₃ / <i>mmc</i> (алгоритм ARD Regression)	Ba ₂ BiRuO ₆	6,0401	14,7499
Ba ₂ VOsO ₆	5,8344	17,1422	Ba_2BiWO_6	6,0430	14,7879
Ba_2VIrO_6	5,8418	17,1460	Ba2BiReO6	6,0410	14,7602
Ba ₂ CrVO ₆	5,7491	18,7279	${\rm Ba}_2{\rm BiOsO}_6$	6,0433	14,7568

Таблица 5

Прогноз параметров кристаллической моноклинной решетки (пространственная группа $P2_1/n$) новых соединений состава $Ca_2^{II}B^{III}B'^VO_6$

Table 5

Prediction of the parameters of the crystal monoclinic lattice (space group $P2_1/n$) of new compounds of the composition $Ca_2^{II}B^{III}B'^{V}O_6$

group $I Z_1(n)$ or	new compo		mposition C	$a_2 D D O_6$	Ca _a RhSbO	5.4675	5.5523
Состав	$a, Å^1$	$b, Å^2$	$c, Å^3$	β, град.4	Ca_2RhTaO_6	5,4593	5,5862
Ca ₂ AlMoO ₆	5,3719	5,4116	7,5809	89,97	Ca ₂ RhBiO ₆	5,5421	5,7152
Ca ₂ AlWO ₆	5,3777	5,4271	7,5174	90,00	Ca_InMoO	5,4992	5,6577
$Ca_2^{AlReO_6}$	5,3538	5,4073	7,5789	89,97	Ca,InRuO	5,4745	5.6157
Ca_2AlOsO_6	5,3502	5,3898	7,5403	90,05	Ca InWO	5 5050	5 6732
Ca ₂ AlIrO ₆	5,3466	5,3922	7,5448	89,98	$Ca_2 III W O_6$	5 4011	5 6 5 2 4
Ca ₂ ScMoO ₆	5,4702	5,6066	7,8717	89,99	$Ca_2 \text{InkeO}_6$	5,4011	5,0354
Ca ₂ ScRuO ₆	5,4455	5,5646	7,8609	90,13	Ca_2 Ir MoO ₆	5,4739	5,6383
Ca ₂ ScWO ₆	5,4760	5,6221	7,8082	89,94	Ca ₂ BiMoO ₆	5,5987	5,8405
Ca ₂ ScReO ₆	5,4521	5,6023	7,8697	89,94	Ca ₂ LaMoO ₆	5,6370	5,8731
Ca ₂ ScIrO ₆	5,4449	5,5872	7,8356	89,95	Ca ₂ LaWO ₆	5,6428	5,8886
a_2 ScBiO ₆	5,5697	5,7895	8,0406	90,02	Ca ₂ LaReO ₆	5,6190	5,8688
Ca ₂ VSbO ₆	5,4507	5,5291	7,89310	90,03	Ca_LaOsO	5,6154	5,8514
Ca ₂ VReO ₆	5,4077	5,5048	7,8582	90,06	CaLaIrO	5.6118	5.8538
Ca ₂ VBiO ₆	5,5253	5,6919	8,0290	90,02	Ca LaBiO	5 7366	6.0560
Ca ₂ CrIrO ₆	5,3972	5,4665	7,6980	90,04	Ca_2LaDIO_6	5,7500	5,0500
Ca ₂ CrBiO ₆	5,5220	5,6687	7,9030	90,02	$Ca_2 Pr VO_6$	5,5790	5,7735
Ca ₂ MnOsO ₆	5,4163	5,4920	7,6727	90,12	Ca ₂ PrMoO ₆	5,6126	5,8341
Ca ₂ MnBiO ₆	5,5375	5,6966	7,8822	90,12	Ca ₂ PrWO ₆	5,6184	5,8496
Ca ₂ FeWO ₆	5,4430	5,5292	7,6840	90,05	Ca ₂ PrReO ₆	5,5945	5,8298
Ca ₂ GaWO ₆	5,4169	5,5060	7,6418	90,05	CaPrOsO	5.5909	5.8124
Ca ₂ GaReO ₆	5,3930	5,4862	7,7034	90,06	C_2 PrIrO	5 5873	5 81/18
Ca ₂ GaOsO ₆	5,3894	5,4688	7,6647	90,05	C_{2} D_{6}	5,5075	6,0170
Ca ₂ GaIrO ₆	5,3858	5,4712	7,6693	90,0	Ca ₂ PrBiO ₆	3,/121	6,0170
Ca ₂ GaBiO ₆	5,5106	5,6734	7,8743	90,00	Ca ₂ NdVO ₆	5,5752	5,7670
Ca ₂ YMoO ₆	5,5574	5,7506	8,0854	90,12	Ca ₂ NdMoO ₆	5,6088	5,8276
Ca ₂ YWO ₆	5,5632	5,7660	8,0219	90,09	Ca ₂ NdWO ₆	5,6146	5,8431
Ca ₂ YReO ₆	5,5393	5,7462	8,0834	90,11	Ca_2NdReO_6	5,5907	5,8233
					- 0		

Продолжение Таблицы 5

Состав	$a, Å^1$	$b, Å^2$	<i>c</i> , Å ³	β, град.4	Состав	$a, Å^1$	$b, Å^2$	<i>c</i> , Å ³	β, град.4
Ca ₂ NdOsO ₆	5,5871	5,8059	8,1836	90,08	Ca ₂ HoMoO ₄	5,5629	5,7515	8,0893	90.12
Ca ₂ NdIrO ₆	5,5835	5,8083	8,1882	90,08	Ca_HoWO	5.5687	5,7670	8.0258	90.08
Ca ₂ NdBiO ₆	5,7083	6,0105	8,3932	89.87	Ca_HoReO	5,5448	5,7472	8,0874	90.10
Ca ₂ PmVO ₆	5,5681	5,7550	8,0263	90,06	Ca_HoOsO	5,5412	5,7297	8,0488	90.12
Ca ₂ PmNbO ₆	5,6184	5,8555	8,0553	90,06	Ca ₂ HoIrO ₂	5,5376	5,7321	8,0533	90.12
$Ca_2^2 PmMoO_6$	5,6017	5,8156	8,0076	90,18	Ca ₂ HoBiO ₆	5,6624	5,9343	8,2583	89,75
Ca ₂ PmRuO ₆	5,5770	5,7736	7,9968	90,05	Ca ₂ ErVO ₆	5,5233	5,6807	8,0794	90,0
Ca ₂ PmSbO ₆	5,6267	5,8356	8,0406	89,87	Ca ₂ ErMoO ₆	5,5569	5,7413	8,0607	90,15
Ca ₂ PmTaO ₆	5,6184	5,8694	8,0157	90,06	Ca ₂ ErWO ₆	5,5627	5,7567	7,9972	90,08
Ca ₂ PmWO ₆	5,6075	5,8310	7,9441	90,12	Ca ₂ ErReO ₆	5,5388	5,7369	8,0587	90,15
Ca ₂ PmReO ₆	5,5837	5,8112	8,0057	90,19	Ca ₂ ErOsO ₆	5,5352	5,7195	8,0201	90.20
$Ca_2 PmOsO_6$	5,5800	5,7938	7,9670	90,05	Ca ₂ ErIrO ₄	5,5316	5,7219	8,0246	90.20
Ca ₂ PmIrO ₆	5,5764	5,7962	7,9716	90,05	Ca_ErBiO_	5.6564	5.9241	8.2296	89.72
Ca ₂ PmBiO ₆	5,7012	5,9984	8,1766	89,87	Ca ₂ TmVO ₂	5.5179	5.6714	8.0797	90.0
Ca ₂ SmVO ₆	5,5619	5,7438	8,3538	90,0	Ca TmMoO	5 5515	5 7320	8,0610	00.15
Ca ₂ SmMoO ₆	5,5955	5,8044	8,3351	89,87	C_2 TmWO	5 5 5 7 3	5 7475	7 007/	90,15
Ca_2SmWO_6	5,6013	5,8199	8,2/16	89,91	$Ca_2 \text{Tm} RaO_6$	5,5575	5 7076	8 0500	90,09
$Ca_2 SmReO_6$	5,5774 5,5720	5,8001	8,3332	89,86	$Ca_2 TIIKeO_6$	5,5554	5,7270	8,0390	90,15
$Ca_2 SmUsO_6$	5,5758 5,5702	5,7850	0,2943 8 2001	90,02	$Ca_2 TmOsO_6$	5,5298	5,7102	8,0204	90,10
$Ca_2 SmBiO$	5,5702	5 9872	8 5040	90,03	$Ca_2 Im IrO_6$	5,5262	5,/126	8,0249	90,23
$Ca_2 ShiDiO_6$	5 5581	5,7336	8 1583	90,0	$Ca_2 TmBiO_6$	5,6510	5,9148	8,2299	89,82
$Ca_2 Eu VO_6$	5 5017	5,7550	8 1306	90,02	Ca_2YbVO_6	5,5136	5,6602	8,0789	90,12
$Ca_2 EuWO$	5,5917	5 8007	0,1390 0,761	90,17	Ca ₂ YbMoO ₆	5,5471	5,7208	8,0601	90,18
$Ca_2 Eu WO_6$	5,5975	5,7000	0,0701 0 1276	90,12	Ca ₂ YbWO ₆	5,5529	5,7363	7,9966	90,12
$Ca_2 EuReO_6$	5,5750	5,7899	0,1570	90,17	Ca ₂ YbReO ₆	5,5291	5,7165	8,0582	90,18
Ca ₂ EuOsO ₆	5,5700	5,7724	8,0990	89,97	Ca ₂ YbOsO ₆	5,5255	5,6991	8,0196	90,10
Ca_2EuIrO_6	5,5664	5,//48	8,1035	90,01	Ca ₂ YbIrO ₆	5,5219	5,7015	8,0241	90,19
Ca ₂ EuB1O ₆	5,6912	5,9770	8,3085	89,91	Ca ₂ YbBiO ₆	5,6467	5,9037	8,2291	89,75
Ca ₂ GdMoO ₆	5,5824	5,7859	8,1187	90,17	Ca ₂ LuVO ₆	5,5054	5,6537	8,0387	90,14
Ca ₂ GdWO ₆	5,5882	5,8013	8,0552	90,21	Ca ₂ LuMoO ₆	5,5390	5,7143	8,0200	90,10
Ca ₂ GdReO ₆	5,5643	5,7815	8,1168	90,17	Ca ₂ LuWO ₆	5,5448	5,7298	7,9565	90,09
Ca ₂ GdOsO ₆	5,5607	5,7641	8,0781	89,97	Ca ₂ LuReO ₆	5,5209	5,7100	8,0180	90,10
Ca ₂ GdIrO ₆	5,5571	5,7665	8,0827	90,08	Ca ₂ LuOsO ₆	5,5173	5,6926	7,9794	90,05
Ca_2GdBiO_6	5,6819	5,9687	8,2877	89,91	Ca ₂ LuIrO ₆	5,5137	5,6950	7,9839	90,19
Ca ₂ TbVO ₆	5,5410	5,7113	8,1307	90,11	Ca ₂ LuBiO ₆	5,6385	5,8972	8,1889	90,09
Ca ₂ TbMoO ₆	5,5745	5,7719	8,1120	90,14	Ca ₂ AmVO ₆	5,5799	5,7596	8,1853	90,03
$Ca_2 TbSbO_6$	5,5995	5,7919	8,1449	89,75	Ca ₂ AmNbO ₆	5,6302	5,8601	8,2143	90.03
$Ca_2 IbWO_6$	5,5803	5,7874	8,0484	90,17	Ca ₂ AmMoO ₆	5,6135	5,8202	8,1666	90.13
$Ca_2 IbReO_6$	5,5505 5,5500	5,7501	8,1100	90,14	Ca ₂ AmRuO	5,5889	5,7782	8,1558	90.13
$Ca_2 T B U S U_6$	5,5529	5,7501	8,0714 8,0750	90,05	Ca ₂ AmSbO ₂	5.6385	5.8402	8,1996	89 79
$Ca_2 T D H O_6$	5,5495	5 0548	8 2800	90,10	Ca ₂ AmTaO ₂	5.6302	5.8741	8.1747	90.01
$Ca_2 DvVO$	5,5350	5 7011	8,2809	90,04	Ca AmWO	5,6193	5 8357	8 1031	00.06
$Ca_2Dy VO_6$	5,5550	5 7617	8 0816	90,0	$Ca_2 AmReO$	5 5955	5 8150	8 1647	90,00
Ca DyWO	5 5744	5 7772	8 0181	00.08	$Ca_2 Am Ca_6$	5,5955	5 7094	8 1260	90,08
$Ca_2 Dy ReO$	5,5505	5,7574	8.0797	90,08	C_{a_2} Ambro	5 5007	5 0000	0,1200 0 1200	90,01
$Ca_2Dy OsO_6$	5,5469	5,7399	8.0411	90,10	$Ca_2 \text{AmirO}_6$	5,3883	5,0008	0,1300	90,10
$Ca_2 Dy IrO_6$	5,5433	5,7423	8.0456	00,12 00,12	$\frac{\text{Ca}_2\text{AmBiO}_6}{1}$	5,/130	6,0030	8,3336	89,85
$Ca_2 Dy RiO_6$	5.6681	5,9445	8.2506	90,12 80 75	¹ — алгоритм А	AKD Regre	ession, 2 —	алгоритм (Convex with
Ca ₂ HoVO ₆	5,5293	5,6909	8,1081	90,0	ioop reduction,	— алгор	mim Kluge,	— алгор	MIM SAND.

Таблица 6

Продолжение Таблицы 6

Прогноз параметров кристаллической моноклинной решетки (пространственная группа $P2_1/n$) новых соединений состава $A_2^{\ II}B^{III}B'^VO_6$ (A — Sr, Ва или Pb)

Table 6

Prediction of the parameters of the crystal monoclinic lattice (space group $P2_1/n$) of new compounds of the composition $A_2^{II}B^{III}B'^VO_6$ (A — Sr, Ba or Pb).

Состав	$a, Å^1$	$b, Å^2$	<i>c</i> , Å ³	β, град.4	S
Sr ₂ ScWO ₆	5,7061	5,6869	7,9291	90,03	S
Sr ₂ YWO ₆	5,7933	5,8309	8,1428	90,21	S
Sr ₂ YBiO ₆	5,8870	5,9982	8,3752	90,09	S
Sr ₂ InBiO ₆	5,8288	5,9054	8,2314	89,99	S
Sr ₂ LaMoO ₆	5,8671	5,9380	8,2032	90,21	S
Sr ₂ LaWO ₆	5,8729	5,9535	8,1397	90,51	S
Sr ₂ LaReO ₆	5,8490	5,9336	8,2012	90,17	S
Sr ₂ LaOsO ₆	5,8454	5,9162	8,1626	90,22	S
Sr_2LaIrO_6	5,8419	5,9186	8,1671	90,34	S
$\mathrm{Sr}_{2}\mathrm{LaBiO}_{6}$	5,9666	6,1208	8,3721	90,19	S
Sr ₂ PrMoO ₆	5,8427	5,8990	8,3155	90,22	S
Sr ₂ PrWO ₆	5,8485	5,9145	8,252	90,07	S
Sr ₂ PrReO ₆	5,8246	5,8946	8,3136	90,20	S
Sr ₂ PrOsO ₆	5,8210	5,8772	8,2749	90,22	S
Sr ₂ PrIrO ₆	5,8174	5,8796	8,2795	90,27	S
Sr_2NdNbO_6	5,8556	5,9324	8,3928	90,19	S
$\mathrm{Sr}_{2}\mathrm{NdMoO}_{6}$	5,8389	5,8925	8,3451	90,21	S
Sr_2NdWO_6	5,8447	5,9080	8,2816	90,24	S
Sr ₂ NdReO ₆	5,8208	5,8881	8,3432	90,22	S
Sr_2NdOsO_6	5,8172	5,87077	8,3045	90,22	S
Sr ₂ NdIrO ₆	5,8136	5,8731	8,3091	90,29	S
Sr ₂ PmNbO ₆	5,8485	5,9203	8,1762	90,19	S
$\mathrm{Sr}_{2}\mathrm{PmMoO}_{6}$	5,8318	5,8804	8,1285	90,22	S
Sr ₂ PmRuO ₆	5,8071	5,8384	8,1177	90,26	S
$\mathrm{Sr}_{2}\mathrm{PmSbO}_{6}$	5,8567	5,9004	8,1615	90,29	S
Sr ₂ PmTaO ₆	5,8485	5,9343	8,1366	90,20	S
Sr ₂ PmWO ₆	5,8376	5,8959	8,0650	90,23	S
Sr ₂ PmReO ₆	5,8137	5,8761	8,1266	90,23	S
$\mathrm{Sr}_{2}\mathrm{PmOsO}_{6}$	5,8101	5,8586	8,0879	90,22	В
$\mathrm{Sr}_{2}\mathrm{PmIrO}_{6}$	5,8065	5,8610	8,0925	90,27	В
$\mathrm{Sr}_{2}\mathrm{PmBiO}_{6}$	5,9313	6,0632	8,2975	90,19	В
Sr_2SmVO_6	5,7920	5,8087	8,4747	90,21	В
Sr_2SmMoO_6	5,8256	5,8693	8,4560	90,23	Р
$\mathrm{Sr}_{2}\mathrm{SmRuO}_{6}$	5,8009	5,8273	8,4452	90,30	Р
Sr_2SmWO_6	5,8314	5,8847	8,3925	90,18	$\frac{P}{1}$
Sr ₂ SmReO ₆	5,8075	5,8649	8,4541	90,22	1 _ 1~
Sr_2SmOsO_6	5,8039	5,8475	8,4154	90,18	10
Sr ₂ EuWO ₆	5,8276	5,8745	8,1970	90,20	
Sr ₂ EuReO ₆	5,8037	5,8547	8,2585	90,23	
Sr ₂ EuOsO ₆	5,8001	5,8373	8,2199	90,28	

		1		
Состав	$a, Å^1$	$b, Å^2$	<i>c</i> , Å ³	β, град.4
Sr ₂ GdWO ₆	5,8183	5,8662	8,1761	90,20
Sr ₂ GdOsO ₆	5,7908	5,8289	8,1990	90,26
Sr ₂ TbMoO ₆	5,8046	5,8368	8,2329	90,22
Sr ₂ TbRuO ₆	5,7799	5,7948	8,2221	90,22
Sr ₂ TbWO ₆	5,8104	5,8522	8,1694	90,20
Sr ₂ TbOsO ₆	5,7829	5,8150	8,1923	90,20
Sr ₂ DyVO ₆	5,7651	5,7659	8,2213	90,15
Sr ₂ DyWO ₆	5,8045	5,8420	8,1390	90,23
Sr ₂ DyOsO ₆	5,7770	5,8048	8,1620	90,19
Sr_2HoVO_6	5,7594	5,7557	8,2290	90,15
Sr_2HoWO_6	5,7987	5,8318	8,1467	90,23
Sr_2HoOsO_6	5,7713	5,7946	8,1697	90,19
Sr ₂ ErOsO ₆	5,7653	5,7843	8,1410	90,21
Sr ₂ TmVO ₆	5,7480	5,7362	8,2006	90,15
Sr ₂ TmNbO ₆	5,7982	5,8368	8,2295	90,15
Sr ₂ TmMoO ₆	5,7816	5,7968	8,1819	90,21
Sr ₂ TmWO ₆	5,7874	5,8123	8,1183	90,16
Sr ₂ TmOsO ₆	5,7599	5,7751	8,1413	90,20
Sr ₂ YbVO ₆	5,7437	5,7251	8,1998	90,12
Sr ₂ YbWO ₆	5,7830	5,8012	8,1175	90,16
Sr ₂ YbOsO ₆	5,7556	5,7639	8,1405	90,16
Sr ₂ LuMoO ₆	5,7691	5,7792	8,1409	90,20
Sr ₂ LuWO ₆	5,7748	5,7947	8,0774	90,11
Sr ₂ LuOsO ₆	5,7474	5,7574	8,1003	90,18
Sr ₂ BiReO ₆	5,8337	5,9318	8,2293	89,91
Sr ₂ AmVO ₆	5,8100	5,8244	8,3062	90,19
Sr ₂ AmNbO ₆	5,8603	5,9250	8,3352	90,19
Sr ₂ AmMoO ₆	5,8436	5,8851	8,2875	90,21
Sr ₂ AmRuO ₆	5,8189	5,8431	8,2767	90,16
Sr ₂ AmSbO ₆	5,8686	5,9051	8,3205	90,19
Sr ₂ AmTaO ₆	5,8603	5,9389	8,2956	90,17
Sr ₂ AmReO ₆	5,8255	5,8807	8,2856	90,15
Sr ₂ AmOsO ₆	5,8219	5,8633	8,2469	90,16
Sr ₂ AmIrO ₆	5,8183	5,8657	8,2515	90,19
Sr ₂ AmBiO ₆	5,9431	6,0679	8,4565	90,14
Ba ₂ PrReO ₆	5,9751	6,0048	8,4817	90,04
Ba ₂ PmReO ₆	5,9642	5,9863	8,2947	90,04
Ba ₂ PmIrO ₆	5,9570	5,9712	8,2606	90,02
Ba ₂ AmReO ₆	5,9760	5,9909	8,4537	90,02
Pb ₂ DyIrO ₆	6,0769	5,7554	7,7063	90,0
Pb ₂ HoIrO ₆	6,0712	5,7452	7,7140	90,0
Ph.ErIrO.	6.0652	5 7350	7 6854	00.04

— алгоритм ARD Regression, ² — алгоритм Convex with oop reduction, ³ — алгоритм Ridge, ⁴ — алгоритм SAND

Таблица 7

Прогноз параметров кристаллической моноклинной решетки (пространственная группа *I*2/*m*) новых соединений состава A₂^{II}B^{III}B'^VO₆

Table 7

Prediction of the parameters of the crystal monoclinic lattice (space group I2/m) of new compounds of the composition $A_2^{-11}B^{111}B'^VO_6$

Состав	$a, Å^1$	$b, Å^2$	$c, Å^3$	β, град.4
Ba ₂ LaVO ₆	6,0719	5,9619	8,0865	96,14
Ba ₂ PrVO ₆	6,0405	5,9347	8,0366	95,96
Ba ₂ PmBiO ₆	6,1496	6,1293	8,6383	90,16
Ba ₂ SmVO ₆	6,0022	5,9067	7,9832	95,88
Ba ₂ SmBiO ₆	6,1338	6,1190	8,6532	89,99
Ba ₂ GdBiO ₆	6,1052	6,0920	8,6003	90,13
Ba ₂ NpBiO ₆	6,1126	5,7853	8,6922	89,90
Ba ₂ PuBiO ₆	6,1170	5,8743	8,6877	89,94
Ba ₂ AmVO ₆	5,9485	5,6029	7,9832	95,77
Ba ₂ AmBiO ₆	6,0801	5,8152	8,6531	89,89
Pb ₂ EuNbO ₆	5,6388	6,0449	8,2646	90,12
Pb ₂ EuMoO ₆	5,6166	5,8858	8,1018	93,50
Pb ₂ EuTaO ₆	5,6446	6,0645	8,2677	90,12
Pb ₂ TbMoO ₆	5,5839	5,8143	8,0534	93,49
Pb ₂ TbReO ₆	5,5793	5,8839	7,9724	91,33
Pb ₂ DyNbO ₆	5,5948	5,9673	8,2316	90,12
Pb ₂ DyMoO ₆	5,5725	5,8082	8,0688	93,50
Pb ₂ DyRuO ₆	5,5515	5,7632	7,9731	91,68
Pb ₂ DyTaO ₆	5,6005	5,9868	8,2347	90,12
Pb ₂ DyWO ₆	5,5815	5,8445	8,3123	92,94
Pb ₂ DyOsO ₆	5,5607	5,9981	8,2088	87,64
Pb ₂ HoNbO ₆	5,5873	5,9672	8,1806	90,11
Pb ₂ HoMoO ₆	5,5650	5,8081	8,0178	93,49
Pb ₂ HoRuO ₆	5,5440	5,7631	7,9221	91,66
Pb ₂ HoTaO ₆	5,5930	5,9868	8,1837	90,11
Pb ₂ HoWO ₆	5,5740	5,8445	8,2613	92,93
Pb ₂ HoOsO ₆	5,5532	5,9981	8,1578	87,63
Pb ₂ ErNbO ₆	5,5736	5,9421	8,1656	90,10
Pb ₂ ErMoO ₆	5,5513	5,7830	8,0028	93,48
Pb ₂ ErRuO ₆	5,5303	5,7380	7,9071	91,66
Pb ₂ ErTaO ₆	5,5793	5,9617	8,1687	90,10
Pb_2ErWO_6	5,5603	5,8194	8,2463	92,93
Pb ₂ ErOsO ₆	5,5395	5,9730	8,1428	87,62
$\mathrm{Pb}_{2}\mathrm{TmMoO}_{6}$	5,5376	5,7801	7,9998	93,48
Pb_2TmRuO_6	5,5166	5,7350	7,9041	91,65
Pb ₂ TmWO ₆	5,5466	5,8165	8,2433	92,92
Pb ₂ TmOsO ₆	5,5258	5,9700	8,1398	87,62
Pb ₂ YbVO ₆	5,5315	5,9095	7,5742	95,81
Pb ₂ YbNbO ₆	5,5851	6,0199	8,0972	90,01
$\mathrm{Pb}_{2}\mathrm{YbMoO}_{6}$	5,5628	5,8608	7,9344	93,40
Pb ₂ YbWO ₆	5,5718	5,8972	8,1779	92,84

Состав	$a, Å^1$	$b, Å^2$	<i>c</i> , Å ³	β, град.4
Pb ₂ YbReO ₆	5,5583	5,9303	7,8534	91,24
Pb ₂ YbOsO ₆	5,5510	6,0508	8,0744	87,54
Pb ₂ LuNbO ₆	5,5566	5,9123	8,0915	90,10
Pb ₂ LuMoO ₆	5,5344	5,7532	7,9287	93,48
Pb ₂ LuRuO ₆	5,5134	5,7082	7,8330	91,66
Pb ₂ LuTaO ₆	5,5624	5,9319	8,0946	90,10
Pb ₂ LuWO ₆	5,5434	5,7896	8,1722	92,93
Pb ₂ LuOsO ₆	5,5225	5,9432	8,0687	87,62

1 — алгоритм Elastic net, 2 — алгоритм Orthogonal Matching Pursuit, 3 — алгоритм Linear Regression, 4 — алгоритм ARD Regression

Таблица 8

Прогноз параметров кристаллической решетки новых соединений состава $\mathrm{A_2^{II}B^{III}B'^VO}_6$ с пространственной группой Pbnm

Table 8

Prediction of crystal lattice parameters for new compounds of composition $A_2^{II}B^{III}B^{VV}O_6$ with space group *Pbnm*

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Состав	$a, Å^1$	$b, Å^2$	$c, Å^3$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ VRuO ₆	5,4450	5,4891	7,7336
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ VWO ₆	5,4426	5,4942	7,6906
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ VUO ₆	5,9439	6,0479	8,5932
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ CrVO ₆	5,4291	5,3793	7,6249
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ CrRuO ₆	5,4040	5,3713	7,5380
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ CrUO ₆	5,9030	5,9301	8,3976
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ MnVO ₆	5,4164	5,5160	7,7218
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ MnMoO ₆	5,3955	5,5080	7,6164
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ MnRuO ₆	5,3914	5,5080	7,6348
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ MnUO ₆	5,8903	6,0668	8,4945
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ FeVO ₆	5,4461	5,5788	7,8200
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ FeUO ₆	5,9200	6,1296	8,5927
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ GaVO ₆	5,4429	5,5908	7,8498
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ GaMoO ₆	5,4220	5,5828	7,7444
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ GaRuO ₆	5,4179	5,5828	7,7629
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ RhUO ₆	5,9260	6,2269	8,6739
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ InVO ₆	5,5092	5,7359	7,9966
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ BiMoO ₆	5,5112	5,7493	7,8680
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ BiRuO ₆	5,5070	5,7493	7,8865
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ BiWO ₆	5,5047	5,7543	7,8435
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ BiReO ₆	5,5133	5,7837	7,9952
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca ₂ BiUO ₆	6,0059	6,3081	8,7461
Sr ₂ RhUO ₆ 6,0257 6,2621 8,6739	Sr_2VIrO_6	5,5160	5,5495	7,7425
	Sr ₂ RhUO ₆	6,0257	6,2621	8,6739

 1 — алгоритм ARD Regression, 2 — алгоритм Orthogonal Matching Pursuit, 3 — алгоритм Orthogonal Matching Pursuit.

(ARD) Regression) [42]. В табл. 3 – 8 представлена часть прогнозов еще не полученных соединений A₂BB'O₆ и оценка параметров их кристаллической решетки.

Выводы

Анализ полученных результатов показывает, что большинство двойных перовскитов с кальцием и стронцием имеют моноклинное искажение (пр. гр. $P2_1/n$). Для соединений с барием характерно удвоение идеальной кубической решетки (пр. гр. Fm(-)3m). Точность прогнозов (в режиме скользящего контроля) типа искажения перовскитоподобной ячейки была не ниже 74 %. Точность оценки линейных параметров решетки была в пределах $\pm 0,0120 - 0,8264$ Å, а точность для углов β при моноклинном искажении решетки — $\pm 0,08 - 0,74$ град.

Полученные прогнозы позволяют уменьшить количество комбинаций элементов при экспериментальном поиске перовскитоподобных соединений с желаемой пространственной группой, что сократит время и затраты. Для специалистов по квантово-механическим расчетам появляется возможность, хотя и приближенно, зная пространственную группу и параметры решетки, определить расположение атомов в кристаллической решетке еще не полученных соединений, что в дальнейшем позволит рассчитать некоторые их физические свойства.

Информация о составе, пространственной группе и параметрах решетки еще не полученных предсказанных соединений после публикации статьи будет введена в базу прогнозов и расширит функциональные возможности БД Фазы (http:// phases.imet-db.ru/). Пользователь этой БД, кроме данных об уже исследованных неорганических соединениях, сможет получить и результаты наших расчетов.

Работа выполнена при частичной финансовой поддержке РФФИ, проекты 20-01-00609 и 18–07–00080. Работа выполнялась по государственному заданию № 075-00328-21-00.

Литература

 Corredor L.T., Landinez Tellez D.A., Martinez Buitrago D., Albino Aguiar J., Roa-Rojas J. Magnetic properties and structural characterization of Sr₂RuHoO₆ complex perovskite. Physica B: Condensed Matter, 2010, v. 407, no. 16, pp. 3085 – 3088, doi: 10.1016/j. physb.2011.12.031.

- Hinatsu Y., Doi Y., Wakeshima M. Antiferromagnetic transitions of osmium-containing rare earth double perovskites Ba₂LnOsO₆ (Ln = rare earths). Journal of Solid State Chemistry, 2013, v. 206, pp. 300 307, doi: 10.1016/j.jssc.2013.08.020.
- Li M.-R., Retuerto M., Deng Z., Stephens P.W., Croft M., Huang Q., Wu H., Deng X., Kotliar G., Sanchez-Benitez J., Hadermann J., Walker D., Greenblatt M. Giant magnetoresistance in the half-metallic doubleperovskite ferrimagnet Mn₂FeReO₆. Angewandte Chemie International Edition, 2015, v. 54, no. 41, pp. 12069 – 12073, doi: 10.1002/anie.201506456.
- Sahnoun O., Bouhani-Benziane H., Sahnoun M., Driz M. Magnetic and thermoelectric properties of ordered double perovskite Ba₂FeMoO₆. Journal of Alloys and Compounds, 2017, v. 714, pp. 704 – 708, doi: 10.1016/j.jallcom.2017.04.180.
- Aguirre M.H., Logvinovich D., Bocher L., Robert R., Ebbinghaus S.G., Weidenkaff A. High-temperature thermoelectric properties of Sr₂RuYO₆ and Sr₂RuErO₆ double perovskites influenced by structure and microstructure. Acta Materialia, 2009, v. 57, no. 1, pp. 108 – 115, doi: 10.1016/j.actamat.2008.09.003.
- Sri Gyan D., Dwivedi A., Roy P., Maiti T. Synthesis and thermoelectric properties of Ba₂TiFeO₆ double perovskite with insight into the crystal structure. Ferroelectrics, 2018, v. 536, no. 1, pp. 146 – 155, doi: 10.1080/00150193.2018.1528922.
- Murugesan G., Nithya R., Kalainathan S. Colossal dielectric behaviour of Sr₂TiMnO_{6-δ} single crystals. Journal of Crystal Growth, 2020, v. 530, pp. 125179/1 – 6, doi: 10.1016/j.jcrysgro.2019.125179.
- Gorodea I., Goanta M., Toma M. Impact of A cation size of double perovskite A₂AlTaO₆ (A = Ca, Sr, Ba) on dielectric and catalytic properties. Journal of Alloys and Compounds, 2015, v. 632, no. 1 – 2, pp. 805 – 809, doi: 10.1016/j.jallcom.2015.01.310.
- Feraru S., Samoila P., Borhan A.I., Ignat M., Iordan A.R., Palamaru M.N. Synthesis, characterization of double perovskite Ca₂MSbO₆ (M = Dy, Fe, Cr, Al) materials via sol-gel auto-combustion and their catalytic properties. Materials Characterization, 2013, v. 84, pp. 112 – 119, doi: 10.1016/j.matchar.2013.07.005
- Huang Y.-H., Liang G., Croft M., Lehtimaki M., Karppinen M., Goodenough J.B. Double-perovskite anode materials Sr₂MMoO₆ (M = Co, Ni) for solid oxide fuel cells. Chemistry of materials, 2009, v. 21, no. 10, pp. 2319 – 2326, doi: 10.1021/cm8033643.
- Rath M.K., Lee K.-T. Characterization of novel Ba₂LnMoO₆ (Ln = Pr and Nd) double perovskite as the anode material for hydrocarbon-fueled solid oxide fuel cells. Journal of Alloys and Compounds, 2018, v. 737, pp. 152 – 159, doi: 10.1016/j.jallcom.2017.12.090.
- Ravi S. Multiferroism in Pr₂FeCrO₆ perovskite. Journal of Rare Earths, 2018, v. 36, no. 11, pp. 1175 – 1178, doi: 10.1016/j.jre.2018.03.023.
- Gou G., Charles N., Shi J., Rondinelli J.M. A-site ordered double perovskite CaMnTi₂O₆ as a multifunctional piezoelectric and ferroelectric-photovoltaic material.

Inorganic Chemistry, 2017, v. 56, no. 19, pp. 11854 – 11861, doi: 10.1021/acs.inorgchem.7b01854.

- Anderson M.T., Greenwood K.B., Taylor G.A., Poeppelmeier K.R. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 1993, v. 22, no. 3, pp. 197 – 233, doi: 10.1016/0079-6786(93)90004-B.
- Glazer A.M. The classification of tilted octahedral in perovskites. Acta Crystallographica, 1972,
 v. B28, no. 11, pp. 3384 – 3392, doi: 10.1107/ S0567740872007976.
- Howard C.J., Stokes H.T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallographica, 1998, v. B54, no. 6, pp. 782 – 789, doi: 10.1107/ S0108768198004200.
- Lufaso M.W., Woodward P.M. Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica, 2001, v. B57, no. 6, pp. 725 – 738, doi: 10.1107/S0108768101015282.
- Lufaso M.W., Barnes P.W., Woodward P.M. Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS. Acta Crystallographica, 2006, v. B62, no. 3, pp. 397 – 410, doi: 10.1107/S010876810600262X.
- Askerka M., Li Z., Lempen M., Liu Y., Johnston A., Saidaminov M.I., Zajacz Z., Sargent E.H. Learning-intemplates enables accelerated discovery and synthesis of new stable double-perovskites. Journal of the American Chemical Society, 2019, v. 141, no. 8, pp. 3682 – 3690, doi: 10.1021/jacs.8b13420.
- 20. Dimitrovska S., Aleksovska S., Kuzmanovski I. Prediction of the unit cell edge length of cubic $A_2^{2+}BB'O_6$ perovskites by multiple linear regression and artificial neural networks. Central European Journal of Chemistry, 2005, v. 3, no. 1, pp. 198 – 215.
- Li W., Jacobs R., Morgan D. Predicting the thermodynamic stability of perovskite oxides using machine learning models. Computational Materials Science, 2018, v. 150, pp. 454 – 463, doi: 10.1016/j. commatsci.2018.04.033.
- Majid A., Khan A., Choi T.-S. Predicting lattice constant of complex cubic perovskites using computational intelligence. Computational Materials Science, 2011, v. 50, no. 6, pp. 1879 – 1888, doi: 10.1016/j. commatsci.2011.01.035.
- Pilania G., Mannodi-Kanakkithodi A., Uberuaga B.P., Ramprasad R., Gubernatis J.E., Lookman T. Machine learning bandgaps of double perovskites. Scientific Reports, 2016, v. 6, art. 19375, doi: 10.1038/srep19375.
- Xie S.R., Kotlarz P., Hennig R.G., Nino J.C. Machine learning of octahedral tilting in oxide perovskites by symbolic classification with compressed sensing. Computational Materials Science, 2020, v. 180, pp. 109690/1-9, doi: 10.1016/j.commatsci.2020.109690.
- Xu Q., Li Z., Liu M., Yin W.-J. Rationalizing perovskites data for machine learning and materials design. The Journal of Physical Chemistry Letters, 2018, v. 9, no. 24, pp. 6948 – 6954, doi: 10.1021/acs. jpclett.8b03232.

- 26. Киселева Н.Н., Покровский Б.И., Комиссарова Л.Н., Ващенко Н.Д. Моделирование образования сложных окислов из исходных компонентов на основе кибернетического метода формирования понятий. Журнал неорганической химии, 1977, т. 22, № 4, с. 883 – 886.
- Киселева Н.Н. Компьютерное конструирование неорганических соединений. Использование баз данных и методов искусственного интеллекта. М.: Наука. 2005, 288 с.
- Журавлев Ю.И., Рязанов В.В., Сенько О.В. Распознавание. Математические методы. Программная система. Практические применения. М.: ФАЗИС. 2006, 176 с.
- Kiselyova N.N., Stolyarenko A.V., Ryazanov V.V., Senko O.V., Dokukin A.A., Podbel'skii V.V. A system for computer-assisted design of inorganic compounds based on computer training. Pattern Recognition and Image Analysis, 2011, v. 21, no. 1, pp. 88 – 94, doi: 10.1134/S1054661811010081.
- Zhuravlev Yu.I., Kiselyova N.N., Ryazanov V.V., Senko O.V., Dokukin A.A. Design of inorganic compounds with the use of precedent-based pattern recognition methods. Pattern Recognition and Image Analysis, 2011, v. 21, no. 1, pp. 95 – 103, doi: 10.1134/ S1054661811010135.
- 31. Киселева Н.Н., Дударев В.А., Рязанов В.В., Сенько О.В., Докукин А.А. Прогнозирование халькошпинелей состава АВСХ₄ (Х — S или Se). Перспективные материалы, 2020, № 7, с. 5 – 18, doi: 10.30791/1028-978Х-2020-7-5-18.
- 32. Wong Ng W., Kaduk J.A., Luong M., Huang Q. X-ray diffraction study and powder patterns of double-perovskites Sr₂RSbO₆ (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu). Powder Diffraction, 2014, v. 29, no. 4, pp. 371–378, doi: 10.1017/S0885715614000566.
- Lavat A.E., Baran E.J. Structural and IR-spectroscopic characterization of some new Sr₂LnSbO₆ perovskites. Journal of Alloys and Compounds, 2008, vol. 460, no. 1 - 2, pp. 152 - 154, doi: 10.1016/j.jallcom.2007.06.003.
- 34. Евдокимов А.А., Меньшенина Н.Ф. Параметры элементарных ячеек Ва₂RЭО₆ Э = Nb, Та. Журнал неорганической химии, 1982, т. 27, № 8, с. 2137 – 2139.
- 35. Saines P.J., Kennedy B.J., Elcombe M.M. Structural phase transitions and crystal chemistry of the series Ba₂LnB'O₆ (Ln = lanthanide and B'=Nb⁵⁺ or Sb⁵⁺). Journal of Solid State Chemistry, 2007, v. 180, no. 2, pp. 401 409, doi: 10.1016/j.jssc.2006.10.017.
- 36. Henmi K., Hinatsu Y., Masaki N.M. Crystal structures and magnetic properties of ordered perovskites Ba_2LnNbO_6 (Ln = lanthanide elements). Journal of Solid State Chemistry, 1999, v. 148, no. 2, pp. 353 – 360, doi: 10.1006/jssc.1999.8460.
- Fu W.T., Ijdo D.J.W. New insight into the symmetry and the structure of the double perovskites Ba₂LnNbO₆ (Ln = lanthanides and Y). Journal of Solid State Chemistry, 2006, v. 179, no. 4, pp. 1022 – 1028, doi: 10.1016/j.jssc.2005.12.031.

Перспективные материалы 2021 N_{\odot} 9

- Ожерельев И.С., Сенько О. В., Киселева Н.Н. Метод поиска выпадающих объектов с использованием параметров неустойчивости обучения. Системы и средства информатики, 2019, т. 29, № 2, с. 122 – 134, doi: 10.14357/08696527190211.
- Динеев В.Д., Дударев В.А. Расширяемая система для многокритериального поиска выбросов в данных. CEUR Workshop Proceedings (CEUR-WS. org), v. 2790. Supplementary Proceedings of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/ RCDL 2020), pp. 103 – 113, http://ceur-ws.org/Vol-2790/paper10.pdf.
- Senko O.V. An optimal ensemble of predictors in convex correcting procedures. Pattern Recognition and Image Analysis, 2009, v. 19, no. 3, pp. 465 – 468, doi: 10.1134/S1054661809030110.
- 41. Dudarev V.A., Kiselyova N.N., Stolyarenko A.V., Dokukin A.A., Senko O.V., Ryazanov V.V., Vashchenko E.A., Vitushko M.A., Pereverzev-Orlov V.S. An information system for inorganic substances physical properties prediction based on machine learning methods. CEUR Workshop Proceedings (CEUR-WS.org), v. 2790. Supplementary Proceedings of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020), pp. 89 – 102, http:// ceur-ws.org/Vol-2790/paper09.pdf.
- Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 2011, v. 12 (Oct.), pp. 2825 – 2830.

References

- Corredor L.T., Landinez Tellez D.A., Martinez Buitrago D., Albino Aguiar J., Roa-Rojas J. Magnetic properties and structural characterization of Sr₂RuHoO₆ complex perovskite. Physica B: Condensed Matter, 2010, vol. 407, no. 16, pp. 3085 – 3088, doi: 10.1016/j. physb.2011.12.031.
- Hinatsu Y., Doi Y., Wakeshima M. Antiferromagnetic transitions of osmium-containing rare earth double perovskites Ba₂LnOsO₆ (Ln = rare earths). Journal of Solid State Chemistry, 2013, vol. 206, pp. 300 307, doi: 10.1016/j.jssc.2013.08.020.
- Li M.-R., Retuerto M., Deng Z., Stephens P.W., Croft M., Huang Q., Wu H., Deng X., Kotliar G., Sanchez-Benitez J., Hadermann J., Walker D., Greenblatt M. Giant magnetoresistance in the halfmetallic double-perovskite ferrimagnet Mn₂FeReO₆. Angewandte Chemie International Edition, 2015, vol. 54, no. 41, pp. 12069 – 12073, doi: 10.1002/ anie.201506456.
- Sahnoun O., Bouhani-Benziane H., Sahnoun M., Driz M. Magnetic and thermoelectric properties of

ordered double perovskite Ba₂FeMoO₆. Journal of Alloys and Compounds, 2017, v. 714, pp. 704 – 708, doi: 10.1016/j.jallcom.2017.04.180.

- Aguirre M.H., Logvinovich D., Bocher L., Robert R., Ebbinghaus S.G., Weidenkaff A. High-temperature thermoelectric properties of Sr₂RuYO₆ and Sr₂RuErO₆ double perovskites influenced by structure and microstructure. Acta Materialia, 2009, vol. 57, no. 1, pp. 108 – 115, doi: 10.1016/j.actamat.2008.09.003.
- Sri Gyan D., Dwivedi A., Roy P., Maiti T. Synthesis and thermoelectric properties of Ba₂TiFeO₆ double perovskite with insight into the crystal structure. Ferroelectrics, 2018, vol. 536, no. 1, pp. 146 – 155, doi: 10.1080/00150193.2018.1528922.
- Murugesan G., Nithya R., Kalainathan S. Colossal dielectric behaviour of Sr₂TiMnO_{6-δ} single crystals. Journal of Crystal Growth, 2020, vol. 530, pp. 125179/1 – 6, doi: 10.1016/j.jcrysgro.2019.125179.
- Gorodea I., Goanta M., Toma M. Impact of A cation size of double perovskite A₂AlTaO₆ (A = Ca, Sr, Ba) on dielectric and catalytic properties. Journal of Alloys and Compounds, 2015, vol. 632, no. 1 – 2, pp. 805 – 809, doi: 10.1016/j.jallcom.2015.01.310.
- Feraru S., Samoila P., Borhan A.I., Ignat M., Iordan A.R., Palamaru M.N. Synthesis, characterization of double perovskite Ca₂MSbO₆ (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties. Materials Characterization, 2013, vol. 84, pp. 112 – 119, doi: 10.1016/j.matchar.2013.07.005
- Huang Y.-H., Liang G., Croft M., Lehtimaki M., Karppinen M., Goodenough J.B. Double-perovskite anode materials Sr₂MMoO₆ (M = Co, Ni) for solid oxide fuel cells. Chemistry of materials, 2009, vol. 21, no. 10, pp. 2319 – 2326, doi: 10.1021/cm8033643.
- Rath M.K., Lee K.-T. Characterization of novel Ba₂LnMoO₆ (Ln = Pr and Nd) double perovskite as the anode material for hydrocarbon-fueled solid oxide fuel cells. Journal of Alloys and Compounds, 2018, vol. 737, pp. 152 – 159, doi: 10.1016/j.jallcom.2017.12.090.
- Ravi S. Multiferroism in Pr₂FeCrO₆ perovskite. Journal of Rare Earths, 2018, vol. 36, no. 11, pp. 1175 – 1178, doi: 10.1016/j.jre.2018.03.023.
- Gou G., Charles N., Shi J., Rondinelli J.M. A-site ordered double perovskite CaMnTi₂O₆ as a multifunctional piezoelectric and ferroelectricphotovoltaic material. Inorganic Chemistry, 2017, vol. 56, no. 19, pp. 11854 – 11861, doi: 10.1021/acs. inorgchem.7b01854.
- Anderson M.T., Greenwood K.B., Taylor G.A., Poeppelmeier K.R. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 1993, vol. 22, no. 3, pp. 197 – 233, doi: 10.1016/0079-6786(93)90004-B.
- Glazer A.M. The classification of tilted octahedral in perovskites. Acta Crystallographica, 1972, vol. B28, no. 11, pp. 3384 – 3392, doi: 10.1107/ S0567740872007976.
- Howard C.J., Stokes H.T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallographica,

1998, vol. B54, no. 6, pp. 782 - 789, doi: 10.1107/S0108768198004200.

- Lufaso M.W., Woodward P.M. Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica, 2001, vol. B57, no. 6, pp. 725 – 738, doi: 10.1107/S0108768101015282.
- Lufaso M.W., Barnes P.W., Woodward P.M. Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS. Acta Crystallographica, 2006, vol. B62, no. 3, pp. 397 – 410, doi: 10.1107/S010876810600262X.
- Askerka M., Li Z., Lempen M., Liu Y., Johnston A., Saidaminov M.I., Zajacz Z., Sargent E.H. Learning-intemplates enables accelerated discovery and synthesis of new stable double-perovskites. Journal of the American Chemical Society, 2019, vol. 141, no. 8, pp. 3682 – 3690, doi: 10.1021/jacs.8b13420.
- 20. Dimitrovska S., Aleksovska S., Kuzmanovski I. Prediction of the unit cell edge length of cubic $A^{2+}_{2}BB'O_{6}$ perovskites by multiple linear regression and artificial neural networks. Central European Journal of Chemistry, 2005, vol. 3, no. 1, pp. 198 – 215.
- Li W., Jacobs R., Morgan D. Predicting the thermodynamic stability of perovskite oxides using machine learning models. Computational Materials Science, 2018, vol. 150, pp. 454 – 463, doi: 10.1016/j. commatsci.2018.04.033.
- Majid A., Khan A., Choi T.-S. Predicting lattice constant of complex cubic perovskites using computational intelligence. Computational Materials Science, 2011, vol. 50, no. 6, pp. 1879 – 1888, doi: 10.1016/j. commatsci.2011.01.035.
- Pilania G., Mannodi-Kanakkithodi A., Uberuaga B.P., Ramprasad R., Gubernatis J.E., Lookman T. Machine learning bandgaps of double perovskites. Scientific Reports, 2016, vol. 6, art. 19375, doi: 10.1038/ srep19375.
- Xie S.R., Kotlarz P., Hennig R.G., Nino J.C. Machine learning of octahedral tilting in oxide perovskites by symbolic classification with compressed sensing. Computational Materials Science, 2020, vol. 180, pp. 109690/1 – 9, doi: 10.1016/j. commatsci.2020.109690.
- Xu Q., Li Z., Liu M., Yin W.-J. Rationalizing perovskites data for machine learning and materials design. The Journal of Physical Chemistry Letters, 2018, vol. 9, no. 24, pp. 6948 – 6954, doi: 10.1021/acs. jpclett.8b03232.
- 26. Kiselyova N.N., Pokrovskii B.I., Komissarova L.N., Vaschenko N.D. Modelirovanie obrazovaniya slozhnych okislov iz iskhodnych komponentov na osnove kiberneticheskogo metoda formirovaniya ponyatii [Simulation of the complicated oxides formation from initial components based on the cybernetic method of concept formation]. *Zhurnal Neorganicheskoi Khimii* — *Russian Journal of Inorganic Chemistry* (in Russ.), 1977, vol. 22, no. 4, pp. 883 – 886.
- 27. Kiselyova N.N. Komp'yuternoe konstruirovanie neorganicheskikh soedinenii. Ispol'zovanie baz

dannykh i metodov iskusstvennogo intellekta [Computer design of inorganic compounds: Use of databases and artificial intelligence methods]. Moscow, Nauka Publ., 2005, 288 p.

- Zhuravlev Yu.I., Ryazanov V.V., Sen'ko O.V. Raspoznavaniye. Matematicheskiye metody. Programmnaya sistema. Prakticheskiye primeneniya [Recognition. Mathematical methods. Program system. Practical applications]. Moscow, FAZIS Publ., 2006, 176 p.
- Kiselyova N.N., Stolyarenko A.V., Ryazanov V.V., Senko O.V., Dokukin A.A., Podbel'skii V.V. A system for computer-assisted design of inorganic compounds based on computer training. Pattern Recognition and Image Analysis, 2011, vol. 21, no. 1, pp. 88 – 94, doi: 10.1134/S1054661811010081.
- Zhuravlev Yu.I., Kiselyova N.N., Ryazanov V.V., Senko O.V., Dokukin A.A. Design of inorganic compounds with the use of precedent-based pattern recognition methods. Pattern Recognition and Image Analysis, 2011, vol. 21, no. 1, pp. 95 – 103, doi: 10.1134/S1054661811010135.
- Kiselyova N.N., Dudarev V.A., Ryazanov V.V., Sen'ko O.V., Dokukin A.A. Predictions of chalcospinels with composition ABCX4 (X – S or Se). Inorganic Materials: Applied Research, 2021, vol. 12, no. 2, pp. 328 – 336, doi: 10.1134/S2075113321020246.
- Wong Ng W., Kaduk J.A., Luong M., Huang Q. X-ray diffraction study and powder patterns of double-perovskites Sr₂RSbO₆ (R= Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu). Powder Diffraction, 2014, vol. 29, no. 4, pp. 371 378, doi: 10.1017/S0885715614000566.
- Lavat A.E., Baran E.J. Structural and IR-spectroscopic characterization of some new Sr₂LnSbO₆ perovskites. Journal of Alloys and Compounds, 2008, vol. 460, no. 1 – 2, pp. 152 – 154, doi: 10.1016/j.jallcom.2007.06.003.
- Evdokimov A.A., Men'shenina N.F. Parametry elementarnykh yascheek Ba₂REO₆ E = Nb, Ta [Unit cell parameters of Ba₂REO₆ E = Nb, Ta]. *Zhurnal Neorganicheskoi Khimii Russian Journal of Inorganic Chemistry* (in Russ.), 1982, vol. 27, no. 8, pp. 2137 2139.
- 35. Saines P.J., Kennedy B.J., Elcombe M.M. Structural phase transitions and crystal chemistry of the series Ba₂LnB'O₆ (Ln = lanthanide and B' = Nb⁵⁺ or Sb⁵⁺). Journal of Solid State Chemistry, 2007, vol. 180, no. 2, pp. 401 409, doi: 10.1016/j.jssc.2006.10.017.
- 36. Henmi K., Hinatsu Y., Masaki N.M. Crystal structures and magnetic properties of ordered perovskites Ba_2LnNbO_6 (Ln = lanthanide elements). Journal of Solid State Chemistry, 1999, vol. 148, no. 2, pp. 353 – 360, doi: 10.1006/jssc.1999.8460.
- 37. Fu W.T., Ijdo D.J.W. New insight into the symmetry and the structure of the double perovskites Ba₂LnNbO₆ (Ln = lanthanides and Y). Journal of Solid State Chemistry, 2006, vol. 179, no. 4, pp. 1022 – 1028, doi: 10.1016/j.jssc.2005.12.031.
- Ozhereliev I.S., Senko O.V., Kiselyova N.N. Metod poiska vypadayuschikh ob'ektov s ispol'zovaniem

parametrov neustoichivosti obuscheniya [Method for searching outlier objects using parameters of learning instability]. *Sistemy i sredstva informatiki — Systems and means of informatics*, 2019, vol. 29, no. 2, pp. 122 – 134, doi: 10.14357/08696527190211.

- Dineev V.D., Dudarev V.A. Rashirayemaya sistema dlya mnogokriterial'nogo poiska vybrosov v dannykh [Extendable system for multicriterial outlier detection]. CEUR Workshop Proceedings (CEUR-WS.org), vol. 2790. Supplementary Proceedings of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/ RCDL 2020), (in Russ.) pp. 103 – 113, http://ceur-ws. org/Vol-2790/paper10.pdf.
- Senko O.V. An optimal ensemble of predictors in convex correcting procedures. Pattern Recognition and Image Analysis, 2009, vol. 19, no. 3, pp. 465 – 468, doi: 10.1134/S1054661809030110.
- 41. Dudarev V.A., Kiselyova N.N., Stolyarenko A.V., Dokukin A.A., Senko O.V., Ryazanov V.V., Vashchenko E.A., Vitushko M.A., Pereverzev-Orlov V.S. An information system for inorganic substances physical properties prediction based on machine learning methods. CEUR Workshop Proceedings (CEUR-WS.org), vol. 2790. Supplementary Proceedings of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020), pp. 89 – 102, http:// ceur-ws.org/Vol-2790/paper09.pdf.
- Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 2011, vol. 12 (Oct.), pp. 2825 – 2830.

Статья поступила в редакцию — 3.02.2021 г. после доработки — 19.04.2021 г. принята к публикации — 20.04.2021 г.

Киселева Надежда Николаевна — Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (119334, Москва, Ленинский проспект, 49), доктор химических наук, главный научный сотрудник, специалист по применению информационных технологий в химии и материаловедении. E-mail: kis@imet.ac.ru.

Дударев Виктор Анатольевич — НИУ Высшая школа экономики (101000, Москва, ул. Мясницкая, 20), кандидат технических наук, доцент; Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (119334, Москва, Ленинский проспект, 49), ведущий научный сотрудник, специалист по информационным технологиям. E-mail: vic@imet.ac.ru.

Столяренко Андрей Владиславович — Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А. А. Байкова Российской академии наук (119334, Москва, Ленинский проспект, 49), кандидат технических наук, научный сотрудник, специалист по информационным технологиям. E-mail: stol-drew@yandex.ru.

Докукин Александр Александрович — Федеральное государственное учреждение Федеральный исследовательский центр "Информатика и управление" Российской академии наук (119333, Москва, ул. Вавилова, 40), кандидат физико-математических наук, старший научный сотрудник; Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А. А. Байкова Российской академии наук (119334, Москва, Ленинский проспект, 49), ведущий научный сотрудник, специалист по методам обучения ЭВМ. E-mail: dalex@ccas.ru.

Сенько Олег Валентинович — Федеральное государственное учреждение Федеральный исследовательский центр "Информатика и управление" Российской академии наук (119333, Москва, ул. Вавилова, 40), доктор физико-математических наук, профессор, ведущий научный сотрудник, специалист по методам обучения ЭВМ. E-mail: senkoov@mail.ru.

Рязанов Владимир Васильевич — Федеральное государственное учреждение Федеральный исследовательский центр "Информатика и управление" Российской академии наук (119333, Москва, ул. Вавилова, 40), доктор физико-математических наук, профессор, главный научный сотрудник, специалист по методам обучения ЭВМ. E-mail: rvvccas@mail.ru.

Витушко Михаил Анатольевич — Федеральное государственное бюджетное учреждение науки Институт проблем передачи информации им. А.А. Харкевича Российской академии наук (127051, Москва, Большой Каретный переулок, 19 стр. 1), научный сотрудник, специалист по методам обучения ЭВМ. E-mail: vit@iitp.ru.

Переверзев-Орлов Вячеслав Сергеевич — Федеральное государственное бюджетное учреждение науки Институт проблем передачи информации им. А.А. Харкевича Российской академии наук (127051, Москва, Большой Каретный переулок, 19 стр. 1), кандидат технических наук, ведущий научный сотрудник, специалист по методам обучения ЭВМ. E-mail: slavaperor@gmail.com.

Ващенко Елена Анатольевна — Федеральное государственное бюджетное учреждение науки Институт проблем передачи информации им. А.А. Харкевича Российской академии наук (127051, Москва, Большой Каретный переулок, 19 стр. 1), научный сотрудник, специалист по методам обучения ЭВМ. E-mail: vea@iitp.ru.

Prediction of the space group of perovskite-like compounds of the composition $A^{II}_{2}B^{III}B'^{V}O_{6}$

N. N. Kiselyova, V. A. Dudarev, A. V. Stolyarenko, A. A. Dokukin, O. V. Sen'ko, V. V. Ryazanov, M. A. Vitushko, V. S. Pereverzev-Orlov, E. A. Vaschenko

The prediction of new compounds of the composition $AII_2B^{III}B^{VO}O_6$ was carried out, the type of distortion of their perovskite-like lattice, the space group were predicted, and the parameters of the crystal lattice of the predicted compounds were estimated. When predicting, only the property values of the chemical elements were used. Programs based on machine learning algorithms for various variants of neural networks, a linear machine, the formation of logical regularities, k-nearest neighbors, support vector machine showed the best results when predicting the type of distortion of a perovskite-like lattice. When evaluating the lattice parameters, the programs based on algorithms for orthogonal matching pursuit and automatic relevance determination regression were the most accurate methods. The accuracy of predictions of the perovskite-like lattice distortion type was no less than 74 %. The accuracy of estimating the lattice linear parameters was within $\pm 0.0120 - 0.8264$ Å, and the accuracy for angles β with monoclinic distortion of the lattice was $\pm 0.08 - 0.74$ deg. The calculations were carried out using systems based on machine learning methods. To evaluate the prediction accuracy, an exam recognition in the cross-validation mode was used for the compounds included in the sample for machine learning. The predicted compounds are promising for the search for new magnetic, thermoelectric and dielectric materials.

Keywords: perovskite, crystal lattice parameter, predicting, machine learning

Kiselyova Nadezhda — Baikov Institute of Metallurgy and Materials Sciences of RAS (119334 Moscow, Russia, Leninskii Prospect, 49), Dr Sci (Chem), chief researcher, specialist in the application of information technologies (IT) to chemistry and materials science. E-mail: kis@imet.ac.ru.

Dudarev Victor — Higher School of Economics. National Research University (101000 Moscow, Russia, 20 Myasnitskaya Ulitsa), PhD (Eng), associate professor; Baikov Institute of Metallurgy and Materials Sciences of RAS (119334 Moscow, Russia, Leninskii Prospect, 49), leading researcher, IT specialist. E-mail: vic@imet.ac.ru.

Stolyarenko Andrey — Baikov Institute of Metallurgy and Materials Sciences of RAS (119334 Moscow, Russia, Leninskii Prospect, 49), PhD (Eng), researcher, IT specialist. E-mail: stol-drew@yandex.ru.

Dokukin Aleksandr — Federal Research Center "Computer Science and Control" of RAS (119333 Moscow, Russia, ul. Vavilova, 40), PhD (Phys-Math), senior researcher; Baikov Institute of Metallurgy and Materials Sciences of RAS (119334 Moscow, Russia, Leninskii Prospect, 49), leading researcher, machine learning specialist. E-mail: dalex@ccas.ru.

Sen'ko Oleg — Federal Research Center "Computer Science and Control" of RAS (119333 Moscow, Russia, ul. Vavilova, 40), Dr Sci (Phys-Math), professor, leading researcher, machine learning specialist. E-mail: senkoov@mail.ru.

Ryazanov Vladimir — Federal Research Center "Computer Science and Control" of RAS (119333 Moscow, Russia, ul. Vavilova, 40), Dr Sci (Phys-Math), professor, chief researcher, machine learning specialist. E-mail: rvvccas@mail.ru.

Vitushko Mikhail—A.A. Kharkevich Institute for Information Transmission Problems of the RAS (127051 Moscow, Russia, Bolshoy Karetny per. 19, build.1), researcher, machine learning specialist. E-mail: vit@iitp.ru.

Pereverzev-Orlov Vyacheslav — A.A. Kharkevich Institute for Information Transmission Problems of the RAS (127051 Moscow, Russia, Bolshoy Karetny per. 19, build.1), PhD (Eng), leading researcher, machine learning specialist. E-mail: slavaperor@gmail.com.

Vashchenko Elena — A.A. Kharkevich Institute for Information Transmission Problems of the RAS (127051 Moscow, Russia, Bolshoy Karetny per. 19, build.1), researcher, machine learning specialist. E-mail: vea@iitp.ru.