ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УЛК 54.31:004.855.5

ПРОГНОЗИРОВАНИЕ НОВЫХ СОЕДИНЕНИЙ СОСТАВА $A^+B^{+3}X_2^{+5}O_7$

© 2018 г. Н. Н. Киселева*, а, А. В. Столяренко*, В. В. Рязанов**, О. В. Сенько**, А. А. Докукин**

*Институт металлургии и материаловедения им. А.А. Байкова РАН, Россия, 119334 Москва, Ленинский пр-т, 49

**Федеральный исследовательский центр "Информатика и управление" РАН, Россия, 119333 Москва, ул. Вавилова, 40

^aE-mail: kis@imet.ac.ru

Поступила в редакцию 14.06.2017 г.

Проведено прогнозирование еще не полученных соединений состава ABX_2O_7 (A^+ и B^{3+} — катионы разных элементов; $X = P^{5+}$, V^{5+} , As^{5+} , Nb^{5+} , Sb^{5+} или Ta^{5+}). Найдены критерии, позволяющие прогнозировать возможность кристаллизации этих соединений в одном из типов кристаллической структуры ($KAIP_2O_7$, веберита, $NaAIP_2O_7$, $LiFeP_2O_7$ или пирохлора) при комнатной температуре и атмосферном давлении. При прогнозировании использованы только данные о свойствах элементов и простых оксидов. Средняя точность прогнозирования не ниже 88%. Расчеты проведены с применением информационно-аналитической системы, основанной на методах распознавания образов по прецедентам.

Ключевые слова: оксиды с кристаллической структурой $KAlP_2O_7$, веберита, $NaAlP_2O_7$, LiFe P_2O_7 , пирохлора, распознавание образов по прецедентам

DOI: 10.1134/S0044457X18100112

Соединения состава ABX_2O_7 (A^+ и B^{3+} — катионы разных элементов; $X = P^{5+}$, V^{5+} , As^{5+} , Nb^{5+} , Sb^{5+} или Ta^{5+}) представляют интерес для поиска новых сегнетоэлектрических [1], магнитных [2] и люминесцентных [3, 4] материалов, катализаторов [5, 6], катодных материалов для литиевых батарей [7, 8] и т.д.

Согласно информации базы данных (БЛ) "Фазы" [9], наибольшее количество соединений этого состава синтезировано в фосфатных системах (рисунок). Большинство соединений АВР₂О₇ кристаллизуется при обычных условиях (комнатной температуре и атмосферном давлении) в структурных типах KAlP₂O₇ [10], NaAlP₂O₇ [11] и LiFeP₂O₇ [12]. Среди немногочисленных известных соединений пятивалентного мышьяка этого состава, помимо соединений со структурой типа $KAlP_2O_7$ и $NaAlP_2O_7$, исследованы фазы со структурой гиттинсита ($CaZrSi_2O_7$) [13]. Наибольшее количество уже полученных соединений ABSb₂O₇ имеет структуру веберита (Na₂MgAlF₇) [14]. Соединения со структурой веберита также образуются в системах с пятивалентными ванадием и танталом. В этих и ниобиевых системах обнаружены соединения с кубической структурой пирохлора. Анализ имеющейся информации о соединениях состава $A^+B^{+3}X_2^{+5}O_7$ указывает на возможность синтеза новых соединений, особенно для X = V, As, Nb, Sb или Ta.

Цель работы — прогнозирование еще не полученных соединений вышеуказанного состава.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Немногочисленные попытки [15-17] найти взаимосвязи между типом кристаллической структуры соединений $A^{+}B^{+3}X_{2}^{+5}O_{7}$ и параметрами компонентов касались в основном соединений со структурой веберита и пирохлора. Как правило, найденные критерии включали отношение ионных радиусов катионов A⁺ и B³⁺ [15, 16] и электроотрицательность элементов A и B [15] (или функцию от электроотрицательности, названную относительной ионностью связей [16, 17]). В [15] рассматривались только соединения состава AgLnSb₂O₇. Авторы [16], помимо веберитов, пирохлоров, флюоритов и перовскитов состава ALnX₂O₇, анализировали информацию о более простых соединениях $A_2X_2O_7$. В [17] пытались найти классифицирующие закономерности, разделяющие оксидные и фторидные соединения разного состава со структурами веберита и пирохлора. По доступным нам сведениям, отсутствуют публикации о закономерностях, поз-

Гистограмма распространенности соединений состава ABX_2O_7 ($X=P^{5+},V^{5+},As^{5+},Nb^{5+},Sb^{5+}$ или Ta^{5+}).

воляющих прогнозировать соединения состава $A^{+}B^{+3}X_{2}^{+5}O_{7}$ с кристаллическими структурами типа KAlP₂O₇, NaAlP₂O₇ и LiFeP₂O₇. Следует отметить, что использование только размерных факторов и электроотрицательности химических элементов не позволяет достаточно точно разделить соединения вышеуказанного состава с различными типами кристаллических структур, на что указано и в [15]. При анализе проекции точек, соответствующих соединениям состава $A^+B^{+3}X_2^{+5}O_7$ с разными структурами, на плоскость, координатами которой являются предложенные в [15] параметры (отношение ионных радиусов по Шеннону для элементов А и Х и электроотрицательность по Олфреду-Рохову элемента А), наблюдается значительное пересечение областей устойчивости различных структурных типов. Отметим, что и при использовании электроотрицательности элемента Х также не удается достичь разделения соединений с разными структурами. Возможная причина неудач связана с тем, что и ионные радиусы, и электроотрицательность являются важными, но не единственными факторами, определяющими тип кристаллической структуры рассматриваемых в настоящем исследовании соединений. Один из путей разделения областей устойчивости разных структурных типов связан с использованием при формировании классифицирующих критериев самого широкого набора свойств компонентов (химических элементов и простых оксидов) и функций от этих свойств. Для поиска таких многомерных критериев мы предлагаем применять методы распознавании образов по прецедентам, с помощью которых ранее удалось найти сложные классифицирующие закономерности и предсказать с достаточно высокой точностью возможность существования и тип кристаллической структуры галогенидных соединений разного состава [18-20].

МЕТОДЫ РАСЧЕТА

Для поиска многомерных критериев, позволяющих разделить области устойчивости различных структурных типов соединений состава ABX_2O_7 , была использована разработанная нами информационно-аналитическая система (**ИАС**) [21], которая объединяет базы данных по свойствам неорганических веществ и материалов и подсистему анализа информации, основанную на методах распознавания образов по прецедентам. Процедура использования ИАС для поиска сложных закономерностей в химической информации и прогнозирования новых неорганических соединений и оценки их свойств подробно описана в [20]. Эта процедура включает следующие этапы.

- 1. Отбор примеров для компьютерного анализа.
- 2. Выбор исходного набора свойств компонентов (элементов и простых оксидов) для формирования искомых критериев.
- 3. Нахождение свойств компонентов и простых алгебраических функций от этих свойств, которые обеспечивали бы наибольшее разделение различных классов соединений вышеуказанного состава.
- 4. Компьютерный анализ отобранной информации с дальнейшим отбором наиболее разделяющих сформированных критериев.
- 5. Использование найденных многомерных критериев для прогнозирования еще не полученных соединений.
- 1. Основным источником исходной информации для компьютерного анализа была база данных "Фазы" [9, 21], входящая в состав ИАС. При экспертной оценке данных существенной проблемой было отнесение кристаллических структур к одному из типов моноклинных структур: KAlP₂O₇, NaAlP₂O₇ или LiFeP₂O₇, для которых в публикациях часто были указаны одинаковые пространственные группы, но не даны типы структур, а также подробная информация о структуре кристаллов. Трудность отбора примеров для компьютерного анализа была связана также и с полиморфизмом соединений $A^+B^{+3}X_2^{+5}O_7$ (в анализируемую выборку включались только данные о типе кристаллической структуры при обычных условиях), так как не во всех публикациях были указаны температура и давление, при которых реализуются те или иные модификации. Для частичной автоматизации процесса выявления веществ, для которых была указана неправильная принадлежность к классу, использовали процедуру, описанную в [22]. Одной из проблем, которая в значительной степени снижает точность прогнозирования, является крайне скудная информация о соединениях ABX_2O_7 , в которых X = V, As, Nb, Sb или Та. Суммарное количество таких полученных

соединений меньше, чем количество известных соединений с фосфором (рисунок).

- 2. Информация о соединениях представлялась в памяти ЭВМ в виде матрицы, строки которой включали набор значений параметров компонентов конкретного соединения с указанием, к какому классу это соединение относится. При выборе исходных свойств компонентов учитывалась физическая и химическая природа исследуемых веществ. Информация о свойствах элементов была получена из разработанной нами БД "Elements" (http://phases.imet-db.ru/elements), а информация об оксидах из БД по свойствам простых оксидов, включенных в ИАС. Результатом первых двух этапов была выборка для компьютерного анализа (обучающая выборка).
- 3. Процедура отбора наиболее важных для классификации свойств компонентов в ИАС автоматизирована, для чего в нее включены специальные программы [23]. При этом учитывался предыдущий опыт поиска критериев [15–17], в которых широко использовались алгебраические функции от параметров элементов. Поэтому при анализе обучающей выборки проводилась оценка не только исходных свойств компонентов, но и автоматически сгенерированных алгебраических функций от этих свойств, что значительно упрощает последующее формирование искомых критериев. Следует отметить, что даже с учетом того, что генерация функций проводится с использованием набора элементарных алгебраических операций над значениями однотипных по физическому смыслу и размерности свойств компонентов, количество сформированных таким образом параметров часто превышает несколько сотен и даже тысяч. В связи с этим отбор только наиболее важных для классификации алгебраических функций для последующего их включения в искомый критерий значительно ускоряет процесс его формирования и часто способствует повышению точности прогнозирования. Результатом работы программ было нахождение набора параметров компонентов, наиболее разделяющих заданные классы.
- 4. Для поиска критериев образования соединений состава ABX_2O_7 и критериев, позволяющих прогнозировать тип их кристаллической структуры при обычных условиях, был использован комплекс из 15 программ распознавания образов по прецедентам, включенный в ИАС [21]. Для оценки точности прогнозирования сформированных критериев была использована широко применяемая для этих целей процедура скользящего контроля, которая подробно описана в [18, 24]. В результате были отобраны наиболее точные алгоритмы распознавания образов. Для формирования обобщенного критерия, использующего достоинства различных алгоритмов, применялась проце-

дура принятия коллективного решения на основе специальных программ [21, 24], включенных в ИАС. Для оценки точности критериев, полученных с использованием этих программ, применялось экзаменационное распознавание информации о 50 веществах, данные о которых были случайно выбраны из обучающих выборок и не использованы при обучении ЭВМ (на завершающем этапе прогнозирования эти контрольные примеры возвращались в выборку для анализа).

При формировании критериев решались три задачи. В первой из них (задача 1) проводился поиск критерия, разделяющего системы А₂О- $B_2O_3-X_2O_5$ с образованием и без образования соединения состава АВХ₂О₇. Следующая задача включала поиск критериев образования соединений указанного состава с наиболее распространенными типами кристаллических структур (KAlP₂O₇, веберита, NaAlP₂O₇, LiFeP₂O₇ или пирохлора). Она разбивалась на две. При решении первой из них проводили многоклассовое прогнозирование принадлежности веществ к одному из семи классов: соединениям со структурой $KAlP_2O_7(1)$, веберита (2), $NaAlP_2O_7(3)$, $LiFeP_2O_7(4)$, пирохлора (5) или соединениям со структурой, отличной от приведенных выше (6), и системам с отсутствием соединений состава ABX_2O_7 (7) (задача 2), а потом решались три задачи (для наиболее представительных целевых классов KAlP₂O₇, NaAlP₂O₇ или веберита) последовательного разделения оксидных систем на три класса: например, целевой класс $1 - KAlP_2O_7$, класс 2 - coeдинения со структурой, отличной от KAlP₂O₇, и класс 3 — отсутствие соединений состава АВХ₂О₇ в системе $A_2O-B_2O_3-X_2O_5$ (три задачи 3). При решении задач варьировались наборы свойств компонентов и алгоритмы распознавания образов. В результате отбирали наиболее разделяющую совокупность параметров компонентов и наиболее точные (по результатам скользящего контроля) алгоритмы распознавания образов по прецедентам.

5. При прогнозировании новых соединений использовались только данные о свойствах компонентов. Все прогнозы были для атмосферного давления и комнатной температуры. Процедура прогнозирования и формирования таблицы прогнозов осуществляется в ИАС автоматически. Пользователь указывает только наборы символов компонентов. Окончательное решение о классе веществ, к которому принадлежит прогнозируемое соединение, принималось на основе сравнения прогнозов, полученных при решении всех задач. Если результаты противоречили друг другу, то прогноз считался неопределенным.

Таблица 1. Прогноз типа кристаллической структуры соединений состава ABP_2O_7

			2	/			
				A			
В	Li	Na	K	Rb	Ag	Cs	T1
Al	#L	#N	#K	#K	#N	K	#K
Sc	#L	#A	#K	K	Α	K	K
V	#L	#N	#K	#K	#N	#K	K
Cr	#L	#N	#K	#K	#N	#K	#K
Mn	#L	?	K	#K	N	K	K
Fe	#L	K	#K	#K	#N	#K	#K
Ga	L	#N	#K	#K	#N	K	#K
Y	L	A	#K	#K	#A	#K	#K
In	#L	#N	#K	#K	#N	#K	#K
La	_	A	#—	_	A	#—	K
Ce	_	A	#—	_	A	_	K
Pr	_	Α	_	_	Α	?	K
Nd	#-	A	#—	_	A	_	K
Pm	?	Α	?	K	Α	K	K
Sm	_	A	?	?	A	?	K
Eu	?	#A	K	K	A	K	K
Gd	?	A	K	#K	A	#K	K
Tb	?	A	#A	#K	A	#K	K
Dy	?	Α	?	#K	#A	#K	#K
Но	?	#A	?	#K	#A	#K	#K
Er	?	A	K	#K	#A	#K	#K
Tm	?	Α	#K	#K	#A	#K	K
Yb	?	#A	#K	#K	#A	#K	#K
Lu	?	#A	#K	#K	#A	#K	K
Bi	L	N	_	_	N	#—	K

Примечание. Здесь и далее: K — прогноз соединений с кристаллической структурой типа $KAlP_2O_7$; W — прогноз веберитов; N — прогноз соединений с кристаллической структурой типа $NaAlP_2O_7$; L — прогноз соединений со структурой типа $LiFeP_2O_7$; P — прогноз пирохлоров; A — прогноз соединений с кристаллической структурой, отличной от приведенных выше; - — прогноз отсутствия соединения состава ABX_2O_7 в системе $A_2O-B_2O_3-X_2O_5$; ? — неопределенный результат. Значком # обозначены ранее изученные системы, информация о которых использована при формировании многомерных критериев.

РАСЧЕТНАЯ ЧАСТЬ

После экспертной оценки в выборку для компьютерного анализа была включена информация о 60 соединениях состава $A^+B^{+3}X_2^{+5}O_7$ со структурой $KAlP_2O_7$, о 22 соединениях со структурой веберита, 17 соединениях со структурой $NaAlP_2O_7$, 9 соединениях со структурой $LiFeP_2O_7$, 8 соединениях со структурой пирохлора, 72 соединениях с кристаллической структурой, отличной от приведенных выше при обычных условиях, и 12 систе-

мах $A_2O-B_2O_3-X_2O_5$, в которых не образуются соединения состава ABX_2O_7 . Следует отметить резкую разницу в размерах классов (количество примеров образования соединений на порядок больше, чем число отсутствия соединений). Естественно, что такая асимметрия может иметь следствием более низкую точность прогнозов, а именно: систем без образования соединений вышеуказанного состава.

В исходный набор параметров компонентов были включены следующие свойства химических элементов А, В, Х и О: псевдопотенциальный радиус (по Цангеру), ионный радиус (по Шеннону) (S15), расстояния до внутренних (S6) и до валентных электронов (по Шуберту), энергии ионизации первого, второго и третьего электронов (Е5-Е7), номера (по Менделееву-Петтифору (М1-М11)), квантовый номер (А5), электроотрицательность (по Полингу), химический потенциал Мидемы, температуры плавления (С1) и кипения (С2), стандартные энтропия, энтальпия атомизации, теплопроводность (18), молярная теплоемкость и т.д., а также термические параметры простых оксидов A_2O_3 и X_2O_5 (температура плавления (распада), стандартные энтропия, теплота образования, изобарная теплоемкость и изобарный потенциал образования) – всего 105 значений для каждой системы А-В-Х-О.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При решении задачи прогнозирования возможности образования соединений $A^+B^{+3}X_2^{+5}O_7$ было найдено, что отношение энергии ионизации первого электрона элемента В к энергии ионизации третьего электрона кислорода (E5(B)/E7(O)), а также отношение номеров (по Менделееву—Петтифору) — M5(B)/M1(A) оказались наиболее разделяющими классы "образование соединения" (1) и "отсутствие соединения" (2). Однако при рассмотрении проекции точек, соответствующих примерам образования и отсутствия соединений $A^+B^{+3}X_2^{+5}O_7$, на плоскость, координатами которой являются указанные выше функции, наблюдалось значительное пересечение классов. Поэтому было решено расширить набор параметров за счет добавления к значениям этих функций исходного набора 105 значений свойств компонентов. Такой расширенный набор параметров и использование для построения многомерного разделяющего критерия программ распознавания образов, основанных на алгоритмах методов опорных векторов, k-ближайших соседей, линейного дискриминанта Фишера, обучения нейронной сети с применением голосования по большинству для принятия коллективного решения, позволили достичь практически полного разделения систем $A_2O-B_2O_3-X_2O_5$, в которых образуются и не образуются соединения состава ABX_2O_7 .

Попытка использовать только найденные по программе [23] наиболее разделяющие параметры: C1(X) + C2(A), S15(A)/S15(X) и A5(A)/M4(X) также не привела к достаточно хорошему разделению соединений с разными типами кристаллических структур. Наибольшую точность (88%) обеспечило включение в искомый критерий только свойств элементов и использование коллектива алгоритмов (методы опорных векторов, k-ближайших соседей, линейной машины, обучения нейронной сети) с применением голосования по большинству для принятия коллективного решения.

С помощью программы [23] было найдено, что значения отношения S15(A)/S15(X) во многом определяют отделение соединений со структурой KAlP₂O₇ от соединений с другими структурами и примеров отсутствия соединений состава АВХ₂О₇ в системе $A_2O-B_2O_3-X_2O_5$. Однако при использовании только размерных факторов не удается получить удовлетворительного отделения соединений со структурой КАІР₂О₇ от соединений других классов. Наилучшая классификация (точность 96%) была получена при включении в искомый критерий только исходных параметров элементов и простых оксидов и использовании алгоритмов распознавания образов на основе методов опорных векторов, k-ближайших соседей и формирования логических закономерностей с применением голосования по большинству для принятия коллективного решения.

Наибольшую точность (98%) отделения соединений со структурой $NaAlP_2O_7$ от соединений с другой структурой и систем без образования соединений прогнозируемого состава показал критерий, включающий свойства элементов и оксидов, а также функции S6(X)/S6(A) и $I8(A) \times I8(B)$. Он был сформирован программами на основе алгоритмов вычисления оценок, линейного дискриминанта Фишера, k-ближайших соседей, метода опорных векторов и алгоритма выпуклого стабилизатора для принятия коллективного решения.

Критерий, включающий только найденные по программе [23] наиболее разделяющие алгебраические функции (M9(X)/M1(A), M10(X)/M7(X) и S15(X)—S15(O)), также не позволил с достаточной точностью отделить вебериты от соединений с другими структурами и примеров отсутствия соединений состава ABX_2O_7 . Однако добавление этих функций в критерий, включающий свойства элементов и оксидов, позволило повысить точность экзаменационного прогнозирования с 92 до 98%. При формировании этого критерия был использован коллектив алгоритмов (методы опорных векторов, k-ближайших соседей и обу-

Таблица 2. Прогноз типа кристаллической структуры соединений состава ABV_2O_7

	A							
В	Li	Na	K	Rb	Ag	Cs	T1	
Al	_	Α	#A	Α	Α	A	P	
Sc	_	P	?	?	Α	Α	Α	
Cr	_	#A	#A	#A	Α	#A	Α	
Mn	_	Α	Α	Α	Α	Α	Α	
Fe	#	#A	#A	Α	#A	Α	Α	
Ga	_	Α	Α	Α	Α	Α	P	
Y	_	#P	?	?	Α	Α	?	
In	_	Α	Α	Α	Α	Α	P	
La	P	?	Α	Α	Α	Α	Α	
Ce	P	W	W	Α	Α	Α	Α	
Pr	P	W	W	?	Α	Α	Α	
Nd	P	#W	W	Α	Α	Α	Α	
Pm	?	W	W	W	Α	?	Α	
Sm	?	#W	W	?	Α	Α	Α	
Eu	?	W	W	W	Α	?	Α	
Gd	P	#W	W	W	Α		Α	
Tb	?	W	W	W	Α	?	Α	
Dy	? ? ? ?	#W	W	W	Α	?	Α	
Но	?	W	W	W	Α	?	Α	
Er	?	W	W	W	Α	?	Α	
Tm	?	W	W	W	Α	?	Α	
Yb	?	W	W	W	Α	?	Α	
Lu	P	W	W	?	Α	?	Α	
Bi	?	A	A	A	A	A	P	

Таблица 3. Прогноз типа кристаллической структуры соединений состава $ABAs_2O_7$

				A			
В	Li	Na	K	Rb	Ag	Cs	T1
Al	#A	#N	#A	#A	N	#A	#A
Sc	#A	#A	K	#K	#A	K	#K
V	A	?	A	A	?	K	K
Cr	A		#A	A	N	#K	?
Fe	#A	#N	#A	A	#N	?	A
Ga	#A	#N	#A	A	#N	Α	A
Y	A	Α	?	?	Α	?	?
In	A	#A	A	#A	?	A	#A

чения нейронной сети) с применением голосования по большинству для принятия коллективного решения.

Сформированные критерии были использованы для прогнозирования возможности образования и типа кристаллической структуры при обычных условиях еще не синтезированных соединений. Табл. 1—6 содержат часть результатов сравнения

Таблица 4. Прогноз типа кристаллической структуры соединений состава $ABNb_2O_7$

В	A								
	Li	Na	K	Rb	Ag	Cs	Tl		
Al	#-	A	A	A	A	A	P		
Sc	#-	P	?	A	A	A	?		
Y	?	#P	P	A	A	A	?		
La	A	#A	#A	A	#A	#A	Α		
Ce	P	?	A	A	A	A	?		
Pr	P	A	A	A	A	#A	?		
Nd	#P	A	A	#A	A	#A	?		
Pm	P	?	?	A	A	A	A		
Sm	P	W	W	A	A	A	Α		
Eu	P	W	W	?	A	A	Α		
Gd	P	P	W	?	A	?	Α		
Tb	P	P	W	?	A	Α	Α		
Dy	# P	W	W	?	A	?	Α		
Но	P	W	W	?	A	?	Α		
Er	P	?	W	?	A	?	Α		
Tm	P	W	W	W	A	?	A		
Yb	P	W	W	?	A	?	Α		
Lu	P	P	?	P	A	P	Α		
Bi	?	#A	A	#A	?	#A	#P		

Таблица 5. Прогноз типа кристаллической структуры соединений состава $ABSb_2O_7$

	_	•						
В	A							
Б	Na	K	Ag					
Al	?	A	N					
Y	W	#W	Α					
La	#W	#W	#A					
Ce	#W	W	A					
Pr	#W	W	#A					
Nd	#W	W	#A					
Pm	W	W	A					
Sm	#W	W	#A					
Eu	#W	W	A					
Gd	#W	W	A					
Tb	#W	W	A					
Dy	#W	W	Α					
Но	W	#W	A					
Er	W	#W	A					
Tm	W	W	Α					
Yb	W	#W	A					
Lu	W	#W	A					

Таблица 6. Прогноз типа кристаллической структуры соединений состава $ABTa_2O_7$

, ,			- 2	- /				
В	A							
	Li	Na	K	Rb	Ag	Cs	Tl	
Al	#-	A	A	A	A	A	P	
La	#A	#A	#A	#A	#A	#A	A	
Ce	A	Α	Α	Α	Α	A	?	
Pr	A	A	A	#A	A	A	A	
Nd	#A	#A	#A	#A	A	#A	?	
Pm	A	P	W	Α	A	A	A	
Sm	A	A	#W	#A	Α	A	A	
Eu	P	?	W	?	A	A	A	
Gd	P	#P	#W	?	A	A	A	
Tb	P	P	W	W	Α	A	A	
Dy	P	P	#W	W	Α	?	Α	
Но	P	P	W	W	A	W	A	
Er	P	P	W	W	Α	?	A	
Tm	P	P	W	W	Α	W	Α	
Yb	P	P	W	?	Α	?	A	
Lu	P	P	#P	?	Α	?	A	
Bi	?	A	A	A	?	A	#P	
	1						1	

Таблица 7. Статистические данные о прогнозируемых типах кристаллических структур соединений состава $A^+B^{+3}X_2^{+5}O_7$

Тип	X							
структуры	P	V	As	Nb	Sb	Ta		
KAlP ₂ O ₇	29	0	4	0	0	0		
Веберит	0	33	0	18	17	14		
$NaAlP_2O_7$	3	0	2	0	1	0		
LiFeP ₂ O ₇	3	0	0	0	0	0		
Пирохлор	0	11	0	20	0	18		

прогнозов, полученных при решении всех классификационных задач.

Анализ полученных данных показывает (табл. 7), что наибольшее количество новых соединений состава ABX_2O_7 прогнозируется в системах с фосфором. Вебериты предсказаны в системах $A_2O-B_2O_3-X_2O_5$, в которых X=V, Nb, Sb или Та. Небольшое количество новых соединений со структурами $NaAlP_2O_7$ прогнозируется в системах с P_2O_5 , As_2O_5 и Sb_2O_5 . Три еще не полученных соединения ABP_2O_7 имеют по прогнозу структуру $LiFeP_2O_7$. Пирохлоры прогнозируются в системах с ванадием, ниобием и танталом. Следует отметить, что точность прогнозирования для

еще не синтезированных соединений во всех рассмотренных выше системах, за исключением систем с P_2O_5 , не может быть высокой, так как количество известных примеров таких соединений невелико. Однако предлагаемые в этой работе методы распознавания образов по прецедентам для поиска многомерных критериев, позволяющих разделить разные классы неорганических соединений, позволяют быстро переформировать искомые критерии с появлением новых экспериментальных данных, которые противоречат ранее полученным прогнозам, и тем самым улучшить точность прогнозирования.

БЛАГОДАРНОСТЬ

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проекты № 18-07-00080, 16-07-01028 и 17-07-01362). Работа выполнялась по государственным заданиям № 007-00129-18-00 и 0063-2020-0003.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Li B.-W.*, *Osada M.*, *Tadashi C. et al.* // Chem. Mater. 2012. V. 24. № 16. P. 3111. doi 10.1021/cm3013039
- 2. Whangbo M.-H., Dai D., Koo H.-J. // Dalton Trans. 2004. № 19. P. 3019. doi 10.1039/B401312N
- 3. *Yuan J.-L., Wang J., Xiong D.B. et al.* // J. Lumin. 2007. V. 126. № 2. P. 717. doi 10.1016/j.jlumin.2006.11.001
- Yuan J.-L., Wang J., Zhang Z.-J. et al. // Opt. Mater. 2008. V. 30. № 8. P. 1327. doi 10.1016/j.optmat.2007.06.017
- 5. *Millet M.M.*, *Vedrine J.C.* // Appl. Catal. 1991. V. 76. № 2. P. 209. doi 10.1016/0166-9834(91)80048-2
- 6. *Machida M.*, *Yabunaka J.*, *Kijima T.* // Chem. Mater. 2000. V. 12. № 3. P. 812. doi 10.1021/cm990577j
- 7. Barpanda P., Nishimura S.-I., Yamada A. // Adv. Energy Mater. 2012. V. 2. № 7. P. 841. doi 10.1002/aenm.201100772

- 8. *Uebou Y., Okada S., Egashira M., Yamaki J.-I.* // Solid State Ionics. 2002. V. 148. № 3–4. P. 323. doi 10.1016/S0167-2738(02)00069-3
- 9. *Киселева Н., Мурат Д., Столяренко А. и др. //* Информационные ресурсы России. 2006. № 4. С. 21.
- 10. *Ng H.N., Calvo C.* // Can. J. Chem. 1973. V. 51. № 16. P. 2613. doi 10.1139/v73-395
- 11. *Alkemper J., Paulus H.F., Fuess H.* // Z. Kristallogr. 1994. V. 209. № 7. P. 616. doi 10.1524/zkri.1994.209.7.616
- 12. *Riou D., Nguyen N., Benloucif R., Raveau B.* // Mater. Res. Bull. 1990. V. 25. № 11. P. 1363. doi 10.1016/0025-5408(90)90218-Q
- 13. *Roelofsen-Ahl J.N., Peterson R.C.* // Can. Mineral. 1989. V. 27. № 4. P. 703.
- Giuseppetti G., Tadini C. // Tschermaks Mineral. Petrogr. Mitt. 1978. V. 25. № 1. P. 57. doi 10.1007/BF01082204
- 15. *Лопатин С.С., Аверьянова Л.Н., Беляев И.Н. и др. //* Журн. неорган. химии. 1982. Т. 27. № 11. С. 2751.
- 16. *Сыч А.М.*, *Кабанова М.И.*, *Гарбуз В.В.*, *Коваленко Е.Н.* // Изв. АН СССР. Неорган. материалы. 1988. Т. 24. № 9. С. 1538.
- 17. *Cai L., Nino J.C.* // Acta Crystallogr., Sect. B. 2009. V. 65. № 3. P. 269. doi 10.1107/S0108768109011355
- 18. *Киселева Н.Н.* // Журн. неорган. химии. 2014. Т. 59. № 5. С. 665. doi 10.7868/S0044457X14050110
- 19. *Киселева Н.Н., Столяренко А.В., Рязанов В.В. и др. //* Журн. неорган. химии. 2014. Т. 59. № 12. С. 1709. doi 10.7868/S0044457X14120101
- 20. *Киселева Н.Н., Столяренко А.В., Рязанов В.В. и др. //* Журн. неорган. химии. 2016. Т. 61. № 5. С. 633. doi 10.7868/S0044457X16050093
- 21. Kiselyova N.N., Stolyarenko A.V., Ryazanov V.V. et al. // Pattern Recognition Image Analysis. 2011. V. 21. № 1. P. 88. doi 10.1134/S1054661811010081
- 22. *Киселева Н.Н., Столяренко А.В., Рязанов В.В. и др. //* Журн. неорган. химии. 2017. Т. 62. № 8. С. 1068. doi 10.7868/S0044457X17080086
- 23. *Senko O.V.* // Pattern Recognition and Image Analysis. 2009. V. 19. № 3. P. 465. doi 10.1134/S1054661809030110
- 24. *Журавлев Ю.И., Рязанов В.В., Сенько О.В.* Распознавание. Математические методы. Программная система. Практические применения. М.: ФАЗИС, 2006. 176 с.